Skip to main content
Log in

Impact of Multi-Level Microstructures on the Strength and Yield Ratio of Extra-Thick Ultra-High-Strength Steel

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The inhomogeneous microstructures and mechanical properties in thickness direction are clearly present for extra-thick ultra-high-strength steel, due to the cross section effect. In this work, multi-level structure and its effect on strength and yield ratio for extra-thick steel are investigated, and the relationship between the microstructures and strength was discussed by the Hall-Petch formula. The results show that the size of prior austenite grain, martensite packet, block and lath are all gradually increasing from the surface to the center, and corresponding strength and yield ratio are decreasing. Simultaneously, the high-angle boundary of the martensite block and the low angle boundaries of the martensite lath have a stacking effect on the dislocation movement, and they act as the “effective grain size” to control the strength and yield ratio. Furthermore, the strain hardening rate is high and decreases rapidly in the first stage in the work hardening behavior, whereas, it is low and reaches a dynamic equilibrium in the second stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. X.Y. Wang, Study on the Hardenability and Strength & Toughness of High Strength Low Alloyed Ultra-Heavy Plate Steels for Marine Engineering, China Iron and Steel Research Institute, China, 2013.

    Google Scholar 

  2. X.J. Sun, S.F. Yuan, Z.J. Xie, L.L. Dong, C.J. Shang and R.D.K. Misra, Microstructure-Property Relationship in a High Strength-High Toughness Combination Ultra-Heavy Gauge Offshore Plate Steel: The Significance of Multiphase Microstructure, Mater. Sci. Eng. A, 2017, 689(24), p 212-219.

    Article  CAS  Google Scholar 

  3. B.B. Wu, S. Huang, Z.Q. Wang, J.X. Zhao, C.S. Wang, C.J. Shang and R.D.K. Misra, Crystallography Analysis of Toughness in High Strength Ultra-Heavy Plate Steel, Mater. Lett., 2019, 250(1), p 55-59.

    Article  CAS  Google Scholar 

  4. Rules for the Material and Qualification Procedures for Ships, Lloyd’s Register, 2014

  5. Z.Y. Gao, T. Pan, Z. Wang, G.Q. Liu and H. Su, Hot Deformation Behavior of a Novel Ni-Cr-Mo-B Ultra-Heavy Plate Steel by Hot Compression Test, J. Iron Steel Res. Int., 2015, 22(9), p 818-826.

    Article  Google Scholar 

  6. X.Y. Wang, T. Pan, H. Wang, H. Su, X.Y. Li and X.Z. Cao, Investigation of the Toughness of Low Carbon Tempered Martensite in the Surface of Ni-Cr-Mo-B Ultra-Heavy Plate Steel, Acta Metall. Sin., 2012, 48(4), p 401-406.

    Article  CAS  Google Scholar 

  7. S.Q. Zhang, X.F. Hu, Y.B. Du, H.C. Jiang, H.Y. Pang and L.J. Rong, Cross-Section Effect of Ni-Cr-Mo-B Ultra-Heavy Steel Plate for Offshore Platform, Acta Metall. Sin., 2020, 56(9), p 1227-1238.

    CAS  Google Scholar 

  8. W.G. Huang, H.S. Fang and Y.K. Zheng, Strength and Strengthening Mechanism of C-Si-Mn-B Bainitic Steel, J. Iron Steel Res. Int., 2003, 15(1), p 38-41.

    CAS  Google Scholar 

  9. A.J. Kaijalainen, P.P. Suikkanen, T.J. Limnell, L.P. Karjalainen, J.I. Kömi and D.A. Porter, Effect of Austenite Grain Structure on the Strength and Toughness of Direct-Quenched Martensite, J. Alloy. Compd., 2013, 577(1), p S642-S648.

    Article  CAS  Google Scholar 

  10. B. Chhajed, K. Mishra, K. Singh and A. Singh, Effect of Prior Austenite Grain Size on the Tensile Properties and Fracture Toughness of Nano-Structured Bainite, Mater. Charact., 2022, 192, p 112214.

    Article  CAS  Google Scholar 

  11. S. Morito, H. Saito, T. Ogawa, T. Furuhara and T. Maki, Effect of Austenite Grain Size on the Morphology and Crystallography of Lath Martensite in Low Carbon Steels, ISIJ Int., 2005, 45(1), p 91-94.

    Article  CAS  Google Scholar 

  12. S. Morito, H. Tanaka, R. Konishi, T. Furuhara and T. Maki, The Morphology and Crystallography of Lath Martensite in Fe-C Alloys, Acta Mater., 2003, 51(6), p 1789-1799.

    Article  CAS  Google Scholar 

  13. C.F. Wang, M.Q. Wang, J. Shi, W.J. Hui and H. Dong, Effect of Microstructure Refinement on the Strength and Toughness of Low Alloy Martensitic Steel, J. Mater. Sci. Technol., 2007, 23(5), p 659-664.

    CAS  Google Scholar 

  14. C.F. Wang, M.Q. Wang, J. Shi, W.J. Hui and H. Dong, Effect of Microstructure on the Toughness of Low Alloy Martensitic Steel, Scripta Mater., 2008, 58(6), p 492-495.

    Article  CAS  Google Scholar 

  15. Z.M. Shi, K. Liu, M.Q. Wang, J. Shi, H. Dong, J. Pu, B. Chi, Y.S. Zhang and J. Li, Effect of Tensile Deformation of Austenite on the Morphology and Strength of Lath Martensite, Met. Mater. Int., 2012, 18(2), p 317-320.

    Article  CAS  Google Scholar 

  16. Z.J. Luo, J.C. Shen, H. Su, Y.H. Ding, C.F. Yang and X. Zhu, Effect of Substructure on Toughness of Lath Martensite/Bainite Mixed Structure in Low-Carbon Steels, J. Iron Steel Res. Int., 2010, 17(11), p 40-48.

    Article  CAS  Google Scholar 

  17. H.W. Luo, X.H. Wang, Z.B. Liu and Z.Y. Yang, Influence of Refined Hierarchical Martensitic Microstructures on Yield Strength and Impact Toughness of Ultra-High Strength Stainless Steel, J. Mater. Sci. Technol., 2020, 51, p 130-136.

    Article  CAS  Google Scholar 

  18. S.L. Long, Y.L. Liang, Y. Jiang, Y. Liang, M. Yang and Y.L. Yi, Effect of Quenching Temperature on Martensite Multi-Level Microstructures and Properties of Strength and Toughness in 20CrNi2Mo Steel, Mater. Sci. Eng. A, 2016, 676(31), p 38-47.

    Article  CAS  Google Scholar 

  19. T. Zhou, H. Yu and S.Y. Wang, Effect of Microstructural Types on Toughness and Microstructural Optimization of Ultra-Heavy Steel Plate: EBSD Analysis and Microscopic Fracture Mechanism, Mater. Sci. Eng. A, 2016, 658(21), p 150-158.

    Article  CAS  Google Scholar 

  20. T. Zhou, H. Yu, J.L. Hu and S.Y. Wang, Study of Microstructural Evolution and Strength-Toughness Mechanism of Heavy-Wall Induction Bend Pipe, Mater. Sci. Eng. A, 2014, 615(6), p 436-446.

    Article  CAS  Google Scholar 

  21. X.H. Li, Y.C. Liu, K.F. Gan, J. Dong and C.X. Liu, Acquiring a Low Yield Ratio Well Synchronized with Enhanced Strength of HSLA Pipeline Steels Through Adjusting Multiple-Phase Microstructures, Mater. Sci. Eng. A, 2020, 785(21), p 139350.

    Article  CAS  Google Scholar 

  22. M.W. Tong, P.K.C. Venkatsurya, W.H. Zhou, R.D.K. Misra, B. Guo, K.G. Zhang and W. Fan, Structure-Mechanical Property Relationship in a High Strength Microalloyed Steel with Low Yield Ratio: The Effect of Tempering Temperature, Mater. Sci. Eng. A, 2014, 609(15), p 209-216.

    Article  CAS  Google Scholar 

  23. S. Morito, X. Huang, T. Furuhara, T. Maki and N. Hansen, The Morphology and Crystallography of Lath Martensite in Alloy Steels, Acta Mater., 2006, 54(19), p 5323-5331.

    Article  CAS  Google Scholar 

  24. Y.L. Liang, S.L. Long, P.W. Xu, Y.M. Lu, Y. Jiang, Y. Liang and M. Yang, The Important Role of Martensite Laths to Fracture Toughness for the Ductile Fracture Controlled by the Strain in EA4T Axle Steel, Mater. Sci. Eng. A, 2017, 695(17), p 154-164.

    Article  CAS  Google Scholar 

  25. R.W. Hertzberg, R.P. Vinci and J.L. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, John Wiley & Sons, USA, 2012.

    Google Scholar 

  26. S.M. Hasan, A. Mandal, S.B. Sign and D. Chakrabarti, Work Hardening Behaviour and Damage Mechanisms in Carbide-Free Bainitic Steel during Uni-Axial Tensile Deformation, Mater. Sci. Eng. A, 2019, 751(28), p 142-153.

    Article  CAS  Google Scholar 

  27. R. Song, D. Ponge and D. Raabe, Mechanical Properties of an Ultrafine Grained C-Mn Steel Processed by Warm Deformation and Annealing, Acta Mater., 2005, 50(53), p 4881-4892.

    Article  Google Scholar 

  28. M. Umemoto, K. Tsuchiya, Z.G. Liu and S. Sugimoto, Tensile Stress-Strain Analysis of Single-Structure Steels, Metall. Mater. Trans. A, 2000, 31(7), p 1785-1794.

    Article  Google Scholar 

  29. D. Raabe, S. Sandlöbes, J. Millán, D. Ponge and P.P. Choi, Segregation Engineering Enables Nanoscale Martensite to Austenite Phase Transformation at Grain Boundaries: A Pathway to Ductile Martensite, Acta Mater., 2013, 61(16), p 6132-6152.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support to the National Natural Science Foundation of China (U20A20279), China Postdoctoral Science Foundation (2021M700875), and Subject innovation and talent introduction program in Colleges and universities (111 program)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Shi, Y., Hu, L. et al. Impact of Multi-Level Microstructures on the Strength and Yield Ratio of Extra-Thick Ultra-High-Strength Steel. J. of Materi Eng and Perform 32, 10344–10353 (2023). https://doi.org/10.1007/s11665-023-07854-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-07854-0

Keywords

Navigation