Skip to main content
Log in

Effect of tensile deformation of austenite on the morphology and strength of lath martensite

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

A hot-rolled steel, 22SiMn2TiB, was employed to study the effect of austenite deformation on the microstructure and strength of the subsequently formed lath martensite. It was revealed that the sizes of the martensite packet, block and lath were refined by the tensile deformation of austenite at temperatures above 850 °C. With the increase of the deformation temperature, the packet size increased, whereas the block size decreased. The width of the lath was independent of the prior austenite grain size and the deformation temperature. The refinement of martensite blocks was considered to strengthen the ausformed martensite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Morito, H. Tanaka, R. Konishi, T. Furuhara, and T. Maki, Acta Mater. 51, 1789 (2003).

    Article  CAS  Google Scholar 

  2. S. Morito, X. Huang, T. Furuhara, T. Maki, and N. Hansen, Acta Mater. 54, 5323 (2006).

    Article  CAS  Google Scholar 

  3. H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino, Acta Mater. 54, 1279 (2006).

    Article  CAS  Google Scholar 

  4. S. Morito, Y. Adachi, and T. Ohba, Mater. Trans. 50, 1919 (2009).

    Article  CAS  Google Scholar 

  5. H. Kitahara, R. Ueji, M. Ueda, N. Tsuji, and Y. Minaminoa, Mater. Charact. 54, 378 (2005).

    Article  CAS  Google Scholar 

  6. T. Maki, Proc. Int. Symp. on Physical Metallurgy Direct-Quenched Steels (eds. K. A. Taylor, S. W. Thompson, and F. B. Fletcher), p.3, Chicago, Illinois, USA (1992).

  7. G. Krauss. Steels: Heat Treatment and Processing Principles, 2 nd ed, Materials Park (OH), ASM International (1990).

    Google Scholar 

  8. C. F. Wang, M. Q. Wang, J. Shi, W. J. Hui, and H. Dong, Scr. Mater. 58, 492 (2008).

    Article  CAS  Google Scholar 

  9. S. Morito, H. Yoshida, T. Maki, and X. Huang, Mater. Sci. Eng. A 438–440, 237 (2006).

    Google Scholar 

  10. Y. L. Zhao, J. Shi, W. Q. Cao, M. Q. Wang, and G. Xie, J. Zhejiang University-Science A 11, 776 (2010).

    Article  CAS  Google Scholar 

  11. A. Shibata, T. Nagoshi, M. Sone, S. Morito, and Y. Higo, Mater. Sci. Eng. A 527, 7538 (2010).

    Article  Google Scholar 

  12. M. Nakajima, S. Komazaki, and Y. Kohno, Int. J. Pres. Ves. Pip. 86, 563 (2009).

    Article  CAS  Google Scholar 

  13. Z. M. Shi, K. Liu, M. Q. Wang, J. Shi, H. Dong, J. Pu, B. Chi, Y. S. Zhang, and J. Li, Mater. Sci. Eng. A. 528, 3681 (2011).

    Article  Google Scholar 

  14. R. Ueji, N. Tsuji, Y. Minamino, and Y. Koizumi, Acta Mater. 50, 4177 (2002).

    Article  CAS  Google Scholar 

  15. T. Y. Hsu (Xu Zuyao), Curr. Opin. Solid State Mater. Sci. 9, 256 (2005).

    Article  CAS  Google Scholar 

  16. S. Matsuda, T. Inoue, H. Mimura, and Y. Okamura, Proc. Int. Symp. on Improved Ductility and Toughness, p.45, ISIJ, Sendai, Japan (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Jian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Z., liu, K., Wang, M. et al. Effect of tensile deformation of austenite on the morphology and strength of lath martensite. Met. Mater. Int. 18, 317–320 (2012). https://doi.org/10.1007/s12540-012-2015-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-012-2015-5

Key words

Navigation