Skip to main content
Log in

Effect of Microwave Hybrid Heating on High-Temperature Adhesive Wear Behavior of High-Velocity Oxygen Fuel-Sprayed WC-CrC-Ni and WC-Co/NiCrFeSiB Coatings

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

HVOF-processed coatings are chemically inhomogeneous and are not metallurgically bonded to the substrate. As a result, components coated with HVOF experience considerable material degradation during sliding wear. Microwave hybrid heating (MHH) is a novel surface modification technique for modifying the as-sprayed properties of the coating. Hence, this paper investigates and compares the wear and frictional behavior of HVOF as-sprayed coatings against MHH samples of WC-CrC-Ni and WC-Co/NiCrFeSiB coatings at elevated temperatures. MHH had a significant impact on wear rate and coefficient of friction by optimizing the porosity, integrated oxide phases and intersplat cohesion strength of the coatings. A modified domestic oven was used to perform MHH on HVOF-coated samples for 5 min at 1200 °C. Wear tests were performed using a pin-on-disk tribometer from room temperature to 200, 400, and 600 °C with Al2O3 disk as a counterface. SEM/EDS and XRD were utilized to examine the microstructural characterization of the coatings and substrate. Both the coatings showed higher wear resistance than the substrate at all temperatures. The WC-Co/NiCrFeSiB coating produced an oxide layer on the worn surfaces and integrated WC, CoWO4, and Fe2SiO4 splats, enhancing wear resistance. The MHH WC-CrC-Ni coating formed Cr2O3 and NiWO4 phases on the worn surfaces, increasing the intersplat cohesion strength between matrix and carbide splats, lowering the overall wear rate. After MHH, the wear rate of a substrate and WC-CrC-Ni coating was 3.5 and 1.12 times more at room temperature and 8.07 and 2.92 times more at 600 °C than WC-Co/NiCrFeSiB coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B. Somasundaram, R. Kadoli, M.R. Ramesh, and C.S. Ramesh, Evaluation of Thermocyclic Oxidation Behavior of HVOF Sprayed WC-CrC-Ni Coatings, Bonfring Int. J. Ind. Eng. Manag. Sci., 2015, 5(2), p 83–89.

    Google Scholar 

  2. M.R. Ramesh, S. Prakash, S.K. Nath, P.K. Sapra, and B. Venkataraman, Solid Particle Erosion of HVOF Sprayed WC-Co/NiCrFeSiB Coatings, Wear, 2010, 269, p 197–205.

    Article  CAS  Google Scholar 

  3. J. Pulsford, F. Venturi, S. Kamnis, and T. Hussain, Sliding Wear Behaviour of WC-Co Reinforced NiCrFeSiB HVOAF Thermal Spray Coatings Against WC-Co and Al2O3 Counterbodies, Surf. Coatings Technol., 2019, 2020, p 386.

    Google Scholar 

  4. D.G. Bhosale and W.S. Rathod, Tribological Behaviour of Atmospheric Plasma and High Velocity Oxy-Fuel Sprayed WC-Cr3C2-Ni Coatings at Elevated Temperatures, Ceram. Int., 2020, 46(8), p 12373–12385.

    Article  CAS  Google Scholar 

  5. D.G. Bhosale, T.R. Prabhu, and W.S. Rathod, Sliding and Erosion Wear Behaviour of Thermal Sprayed WC-Cr3C2-Ni Coatings, Surf. Coatings Technol., 2020, 400(April), p 126192.

    Article  CAS  Google Scholar 

  6. S. Zafar and A.K. Sharma, Microstructure and Wear Performance of Heat Treated WC-12Co Microwave Clad, Vaccum, 2016, 131, p 213–222.

    Article  CAS  Google Scholar 

  7. C.D. Prasad, S. Joladarashi, M.R. Ramesh, and M.S. Srinath, Microstructural and Tribological Resistance of Flame-Sprayed CoMoCrSi/WC-CrC-Ni and CoMoCrSi/WC-12Co Composite Coatings Remelted by Microwave Energy, J. Bio- Tribo-Corrosion, 2020, 6(4), p 1–15.

    Article  Google Scholar 

  8. D. Gupta and A.K. Sharma, Surface & Coatings Technology Development and Microstructural Characterization of Microwave Cladding on Austenitic Stainless Steel, Surf. Coat. Technol., 2011, 205(21–22), p 5147–5155.

    Article  CAS  Google Scholar 

  9. A. Bansal, S. Zafar, and A.K. Sharma, Microstructure and Abrasive Wear Performance of Ni-Wc Composite Microwave Clad, J. Mater. Eng. Perform, 2015, 24(10), p 3708–3716.

    Article  CAS  Google Scholar 

  10. C.D. Prasad, S. Joladarashi, M.R. Ramesh, M.S. Srinath, and B.H. Channabasappa, Development and Sliding Wear Behavior of Co-Mo-Cr-Si Cladding through Microwave Heating, SILICON, 2019, 11(6), p 2975–2986.

    Article  CAS  Google Scholar 

  11. D. Gupta and A.K. Sharma, Investigation on Sliding Wear Performance of WC10Co2Ni Cladding Developed through Microwave Irradiation, Wear, 2011, 271(9–10), p 1642–1650.

    Article  CAS  Google Scholar 

  12. R.R. Mishra and A.K. Sharma, Microwave-Material Interaction Phenomena: Heating Mechanisms, Challenges and Opportunities in Material Processing, Compos. Part A Appl. Sci. Manuf., 2016, 81, p 78–97.

    Article  CAS  Google Scholar 

  13. C.D. Prasad, S. Joladarashi, M.R. Ramesh, M.S. Srinath, and B.H. Channabasappa, Effect of Microwave Heating on Microstructure and Elevated Temperature Adhesive Wear Behavior of HVOF Deposited CoMoCrSi-Cr3C2 Coating, Surf. Coatings Technol., 2018, 2019(374), p 291–304.

    Google Scholar 

  14. B. Somasundaram, R. Kadoli, and M.R. Ramesh, Hot Corrosion Behaviour of HVOF Sprayed (Cr3C2–35% NiCr) + 5% Si Coatings in the Presence of Na2SO4–60% V2O5 at 700 °C, Trans. Indian Inst. Met., 2015, 68(2), p 257–268.

    Article  CAS  Google Scholar 

  15. P. Suresh Babu, P. Chanikya Rao, A. Jyothirmayi, P. Sudharshan Phani, L. Rama Krishna, and D. Srinivasa Rao, Evaluation of Microstructure, Property and Performance of Detonation Sprayed WC-(W, Cr)2C-Ni Coatings, Surf. Coatings Technol., 2017, 2018(335), p 345–354.

    Google Scholar 

  16. L. Thakur and N. Arora, Solid Particle Erosion Behavior of WC-CoCr Nanostructured Coating, Tribol. Trans., 2013, 56(5), p 781–788.

    Article  CAS  Google Scholar 

  17. W. Fang, T.Y. Cho, J.H. Yoon, K.O. Song, S.K. Hur, S.J. Youn, and H.G. Chun, Processing Optimization, Surface Properties and Wear Behavior of HVOF Spraying WC-CrC-Ni Coating, J. Mater. Process. Technol., 2009, 209(7), p 3561–3567.

    Article  CAS  Google Scholar 

  18. H.J. Kim, S.Y. Hwang, C.H. Lee, and P. Juvanon, Assessment of Wear Performance of Flame Sprayed and Fused Ni-Based Coatings, Surf. Coatings Technol., 2003, 172(2–3), p 262–269.

    Article  CAS  Google Scholar 

  19. C.D. Prasad, S. Joladarashi, M.R. Ramesh, M.S. Srinath, and B.H. Channabasappa, Influence of microwave hybrid heating on the sliding wear behaviour of HVOF sprayed CoMoCrSi coating, Mater. Res. Express, 2018, 5(8), p 086519.

    Article  Google Scholar 

  20. C.D. Prasad, S. Joladarashi, M.R. Ramesh, M.S. Srinath, and B.H. Channabasappa, Microstructure and Tribological Behavior of Flame Sprayed and Microwave Fused CoMoCrSi/CoMoCrSi-Cr3C2 Coatings, Mater. Res. Express, 2019, 6(2), p 026512.

    Article  Google Scholar 

  21. M.S. Rao, M.R. Ramesh, and R. Kadoli, Solid Particle Erosion Behavior of Partially Oxidized Al with NiCr Composite Coating at Elevated Temperature, J. Mater. Eng. Perform., 2021, 30, p 3749–3760.

    Article  Google Scholar 

  22. G. Bolelli, A. Candeli, L. Lusvarghi, A. Ravaux, K. Cazes, A. Denoirjean, S. Valette, C. Chazelas, E. Meillot, and L. Bianchi, Tribology of NiCrAlY+Al2O3 Composite Coatings by Plasma Spraying with Hybrid Feeding of Dry Powder+Suspension, Wear, 2015, 344–345, p 69–85.

    Article  Google Scholar 

  23. A. Kanno, K. Takagi, and M. Arai, Influence of Chemical Composition, Grain Size, and Spray Condition on Cavitation Erosion Resistance of High-Velocity Oxygen Fuel Thermal-Sprayed WC Cermet Coatings, Surf. Coatings Technol., 2019, 2020, p 394.

    Google Scholar 

  24. B. Somasundaram, R. Kadoli, M.R. Ramesh, and C.S. Ramesh, High Temperature Corrosion Behaviour of HVOF Sprayed WC-CrC-Ni Coatings, Int. J. Surf. Sci. Eng., 2016, 10(4), p 400–413.

    Article  CAS  Google Scholar 

  25. A. Valarezo, G. Bolelli, W.B. Choi, S. Sampath, V. Cannillo, L. Lusvarghi, and R. Rosa, Damage Tolerant Functionally Graded WC-Co/Stainless Steel HVOF Coatings, Surf. Coatings Technol., 2010, 205(7), p 2197–2208.

    Article  CAS  Google Scholar 

  26. K.R.R.M. Reddy, N. Ramanaiah, and M.M.M. Sarcar, Microstructural Evolution of the WC-Co/NiCrAlY Duplex Coating System on Ti6Al4V and Its Influence on Mechanical Properties, Procedia Mater. Sci., 2014, 5, p 326–334.

    Article  CAS  Google Scholar 

  27. G. Singh and M. Kaur, High-Temperature Wear Behaviour of HVOF Sprayed 65% (NiCrSiFeBC ) − 35% (WC – Co ) Coating. Surf. Eng. 1–17 (2019)

  28. S.R. Medabalimi, M.R. Ramesh, and R. Kadoli, Developing Partially Oxidized NiCr Coatings Using the Combined Flame Spray and Plasma Spray Process for Improved Wear Behaviour at High Temperature. Wear 1–11 (2021)

  29. S. Du, Z. Li, Z. He, H. Ding, X. Wang, and Y. Zhang, Effect of Temperature on the Friction and Wear Behavior of Electroless Ni-P-MoS2-CaF2 Self-Lubricating Composite Coatings, Tribol. Int., 2018, 128(April), p 197–203.

    Article  CAS  Google Scholar 

  30. F.H. Stott, High-Temperature Sliding Wear of Metals, Tribol. Int., 2002, 35(8), p 489–495.

    Article  CAS  Google Scholar 

  31. S.R. Medabalimi, M.R. Ramesh, and R. Kadoli, High-Temperature Solid Particle Erosion Behavior of Partially Oxidized NiCrBSiFe/NiCr Plasma Spray Coatings, J. Therm. Spray Technol., 2021, 30(6), p 1638–1652.

    Article  CAS  Google Scholar 

  32. M.R. Ramesh, S. Prakash, S.K. Nath, P.K. Sapra, and B. Venkataraman, Solid Particle Erosion of HVOF Sprayed WC-Co/NiCrFeSiB Coatings, Wear, 2010, 269(3–4), p 197–205.

    Article  CAS  Google Scholar 

  33. F. Tomoyuki, Y. Ryohei, T. Keiichiro, and S. Yoshinobu, Analysis of the Early Stage of Stress Corrosion Cracking in Austenitic Stainless Steel by EBSD and XRD, Mater. Charact., 2021, 172, p 1–17.

    Google Scholar 

  34. M. Makowska, P.V.W. Sasikumar, L. Hagelüken, D.F. Sanchez, N. Casati, F. Marone, G. Blugan, J. Brugger, and H. Van Swygenhoven, Cracks, Porosity and Microstructure of Ti Modified Polymer-Derived SiOC Revealed by Absorption-, XRD- and XRF-Contrast 2D and 3D Imaging, Acta Mater., 2020, 198, p 134–144.

    Article  CAS  Google Scholar 

  35. D. Naragani, M.D. Sangid, P.A. Shade, J.C. Schuren, H. Sharma, J.S. Park, P. Kenesei, J.V. Bernier, T.J. Turner, and I. Parr, Investigation of Fatigue Crack Initiation from a Non-Metallic Inclusion via High Energy X-ray Diffraction Microscopy, Acta Mater., 2017, 137, p 71–84.

    Article  CAS  Google Scholar 

  36. M.S.R. G, M.R. Ramesh, N.R. T, and J. N, Charactersation & Hot Corrosion Studies on Plasma Sprayed (WC-CO)/(CR 3 C 2 -NICR ) Coating on Titanium & Special Steel Alloys. Int. J. Mech. Eng. Technol. 9(5), 227–237 (2018)

  37. A.L. Robertson and K.W. White, Microscale Fracture Mechanisms of a Cr3C2-NiCr HVOF Coating, Mater. Sci. Eng. A, 2017, 688, p 62–69.

    Article  CAS  Google Scholar 

  38. W. Zhou, K. Zhou, Y. Li, C. Deng, and K. Zeng, High Temperature Wear Performance of HVOF-Sprayed Cr3C2-WC-NiCoCrMo and Cr3C2-NiCr Hardmetal Coatings, Appl. Surf. Sci., 2017, 416, p 33–44.

    Article  CAS  Google Scholar 

  39. S.H. Zhang, T.Y. Cho, J.H. Yoon, M.X. Li, P.W. Shum, and S.C. Kwon, Investigation on Microstructure, Surface Properties and Anti-Wear Performance of HVOF Sprayed WC-CrC-Ni Coatings Modified by Laser Heat Treatment, Mater. Sci. Eng. B Solid State Mater. Adv. Technol., 2009, 162(2), p 127–134.

    Article  CAS  Google Scholar 

  40. M. Aristizabal, L.C. Ardila, F. Veiga, M. Arizmendi, J. Fernandez, and J.M. Sánchez, Comparison of the Friction and Wear Behaviour of WC-Ni-Co-Cr and WC-Co Hardmetals in Contact with Steel at High Temperatures, Wear, 2012, 280–281, p 15–21.

    Article  Google Scholar 

  41. C.D. Prasad, S. Joladarashi, M.R. Ramesh, M.S. Srinath, and B.H. Channabasappa, Comparison of Microstructural and Sliding Wear Resistance of HVOF Coated and Microwave Treated CoMoCrSi-WC + CrC + Ni and CoMoCrSi-WC + 12Co Composite Coatings Deposited on Titanium Substrate, SILICON, 2020, 12(12), p 3027–3045.

    Article  CAS  Google Scholar 

  42. W. Xiong, M. Ma, J. Zhang, and Y. Lian, The Effects of Cr2O3 Particles on the Microstructure and Wear-Resistant Properties of Electrodeposited CoNiP Coatings, Surf. Coatings Technol., 2019, 2020(381), p 125–167.

    Google Scholar 

  43. G. Zhang, J. Sun, and Q. Fu, Effect of Mullite on the Microstructure and Oxidation Behavior of Thermal-Sprayed MoSi2 Coating at 1500 °C, Ceram. Int., 2020, 46(8), p 10058–10066.

    Article  CAS  Google Scholar 

  44. G. Singh and M. Kaur, High-Temperature Wear Behaviour of HVOF Sprayed 65% (NiCrSiFeBC) − 35% (WC-Co) Coating, Surface Eng., 2020, 36(11), p 1139–1155.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subba Rao Medabalimi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medabalimi, S.R., Ananthu, M.R., Gudala, S. et al. Effect of Microwave Hybrid Heating on High-Temperature Adhesive Wear Behavior of High-Velocity Oxygen Fuel-Sprayed WC-CrC-Ni and WC-Co/NiCrFeSiB Coatings. J. of Materi Eng and Perform 32, 8612–8624 (2023). https://doi.org/10.1007/s11665-022-07756-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07756-7

Keywords

Navigation