Skip to main content
Log in

Microstructural Morphology and Mechanical Properties of Cooling Slope Rheocast A380 Al Alloy

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The present study reports microstructure and mechanical properties of A380 Al alloy, rheocast using cooling slope. The cooling slope rheocasting technique yields rosette-shaped and near-spherical primary Al (α-Al) grains, in spite of dendritic ones observed in case of conventional cast (as-received) state of the alloy. Further improvement in microstructural morphology is noticed for the said alloy, when rheocast after individual and combined addition of grain refining (Al-5Ti-1B master alloy) and modifying agents (Al-10Sr master alloy). Moreover, cooling slope rheocasting technique facilitates formation of α-type Al15(Fe,Mn)3Si2 polyhedrons within the rheocast alloy, despite highly brittle platelet-shaped β-type Al5FeSi intermetallics observed in case of conventional liquidus cast state of the alloy. Cooling slope processing also ensures uniform distribution of iron-based intermetallics (α-type Al15(Fe,Mn)3Si2 polyhedrons) within the matrix of the rheocast alloy, along with the generation of fine fibrous morphology of eutectic Si and eutectic Al2Cu particles. The above reasons govern the noticeable improvement observed in mechanical properties of the rheocast alloy compared to its conventional cast counterpart. Best set of mechanical properties, i.e., the highest tensile strength, hardness, and impact toughness, has been achieved in the combined melt-treated (grain refined + modified) rheocast alloy, among other rheocast alloys studied here. This is attributed to the minimum presence of iron-based intermetallics, finer eutectic morphology, as well as spheroidal primary Al grains, in case of refiner and modifier added rheocast alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. M.C. Flemings, Behavior of Metal Alloys in the Semisolid State, Metall. Trans. A, 1991, 22A, p 957–981.

    Article  CAS  Google Scholar 

  2. H.V. Atkinson, Modelling the Semisolid Processing of Metallic Alloys, Prog. Mater. Sci., 2005, 50, p 341–412.

    Article  CAS  Google Scholar 

  3. Z. Fan, Semisolid Metal Processing, Int. Mater. Rev., 2002, 47(2), p 49–85.

    Article  CAS  Google Scholar 

  4. R. Ghomashchi and A. Vikhrov, Squeeze Casting: An Overview, J. Mater. Process. Technol., 2000, 101, p 1–9.

    Article  Google Scholar 

  5. E. Parshizfard and S.G. Shabestari, An Investigation on the Microstructural Evolution and Mechanical Properties of A380 Aluminum Alloy during SIMA Process, J. Alloy. Compd., 2011, 509, p 9654–9658.

    Article  CAS  Google Scholar 

  6. E.C. Legoretta, H.V. Atkinson, and H. Jones, Cooling Slope Casting to Obtain Thixotropic Feedstock II: Observations with A356 Alloy, J. Mater. Sci., 2008, 43, p 5456–5469.

    Article  CAS  Google Scholar 

  7. Q.D. Qin, Y.G. Zhao, P.J. Cong, W. Zhou, and B. Xu, Semisolid Microstructure of Mg2Si/Al Composite by Cooling Slope Cast and its Evolution during Partial Remelting Process, Mater. Sci. Eng. A, 2007, 444(1–2), p 99–103.

    Article  Google Scholar 

  8. W.R. Loue and M. Suery, Microstructural Evolution during Partial Remelting, Mater. Sci. Eng. A, 1995, 203(1–2), p 1–13.

    Article  Google Scholar 

  9. T. Haga, Semisolid Strip Casting Using a Twin Roll Caster Equipped with a Cooling Slope, J. Mater. Process. Technol., 2002, 130–131, p 558–561.

    Article  Google Scholar 

  10. Y. Birol, Cooling Slope Casting and Thixoforming of Hypereutectic A390 Alloy, J. Mater. Process. Technol., 2008, 207, p 200–203.

    Article  CAS  Google Scholar 

  11. Z.H. Xiao, J.R. Luo, S.S. Wu, D.N. Li, Y.W. Mao, and X.J. Song, Study on a Semi-solid Rheo-diecasting Process with AZ91D Alloy Slurry, JMEPEG, 2004, 13, p 60–63.

    Article  CAS  Google Scholar 

  12. K.A. Ragab, A. Bouaicha, and M. Bouazara, Optimization of Casting Design Parameters on Fabrication of Reliable Semi-solid Aluminum Suspension Control Arm, JMEPEG, 2017, 26, p 4450–4461.

    Article  CAS  Google Scholar 

  13. M. Slezak, P. Bobrowski, and Ł Rogal, Microstructure Analysis and Rheological Behavior of Magnesium Alloys at Semi-solid Temperature Range, JMEPEG, 2018, 27, p 4593–4605.

    Article  CAS  Google Scholar 

  14. Y. Lu, M. Li, and X. Li, Deformation Behavior and Constitutive Equation Coupled the Grain Size of Semi-solid Aluminum Alloy, JMEPEG, 2010, 19, p 1337–1343.

    Article  CAS  Google Scholar 

  15. L. Zhang, H. Yan, and L. Xu, Rheological Research of Semi-solid AlSi7Mg Slurry by High-Energy Ultrasound and Cerium Addition, JMEPEG, 2021, 30, p 8589–8597.

    Article  CAS  Google Scholar 

  16. P.K. Seo, D.U. Kim, and C.G. Kang, Effects of Die Shape and Injection Conditions Proposed with Numerical Integration Design on Liquid Segregation and Mechanical Properties in Semi-solid Die Casting Process, J. Mater. Process. Technol., 2006, 176, p 45–54.

    Article  CAS  Google Scholar 

  17. C.G. Kang and S.M. Lee, Effect of Solid Fraction and Pressure on Microstructure and Mechanical Properties and Reduction in Liquid Segregation in the Thixo-Die-Casting Process with Al-7 Pct Si Alloy, Metall. Mater. Trans. A, 2008, 39A, p 1213–1224.

    Article  CAS  Google Scholar 

  18. S.G. Shabestari and E. Parshizfard, Effect of Semi-solid Forming on the Microstructure and Mechanical Properties of the Iron Containing Al-Si Alloys, J. Alloy. Compd., 2011, 509, p 7973–7978.

    Article  CAS  Google Scholar 

  19. S. Shankar and D. Apelian, Die Soldering: Mechanism of the Interface Reaction between Molten Aluminum Alloy and Tool Steel, Mater. Trans., 2002, 33B, p 465–476.

    Article  CAS  Google Scholar 

  20. A. Couture, Iron in Aluminium Casting Alloys: A Literature Survey, AFS Int. Cast Met. J., 1981, 6(4), p 9–17.

    Google Scholar 

  21. M.R. Ghomashchi, Intermetallic Compounds in an Al-Si Alloy Used in High Pressure Diecasting, Z. Met., 1987, 78(11), p 784–787.

    CAS  Google Scholar 

  22. L.A. Narayanan, F.H. Samuel, and J.E. Gruzleski, Crystallization Behavior of Iron Containing Intermetallics Compounds in 319 Aluminum Alloy, Metall. Mater. Trans. A, 1994, 25, p 1761–1773.

    Article  Google Scholar 

  23. S.G. Shabestari, M. Keshavarz, and M.M. Hejazi, Effect of Strontium on the Kinetics of Formation and Segregation of Intermetallic Compounds in A380 Aluminum Alloy, J. Alloy. Compd., 2009, 477, p 892–899.

    Article  CAS  Google Scholar 

  24. S.G. Shabestari and M. Ghanbari, Effect of Plastic Deformation and Semisolid Forming on Iron–Manganese Rich Intermetallics in Al–8Si–3Cu–4Fe–2Mn Alloy, J. Alloy. Compd., 2010, 508, p 315–319.

    Article  CAS  Google Scholar 

  25. L. Ceschini, I. Boromei, A. Morri, S. Seifeddine, and I.L. Svensson, Microstructure, Tensile and Fatigue Properties of the Al–10%Si–2%Cu Alloy with Different Fe and Mn Content Cast Under Controlled Conditions, J. Mater. Process. Technol., 2009, 209, p 5669–5679.

    Article  CAS  Google Scholar 

  26. S.G. Shabestari, The Effect of Iron and Manganese on the Formation of Intermetallic Compounds in Aluminum-Silicon Alloys, Mater. Sci. Eng. A, 2004, 384, p 289–298.

    Article  Google Scholar 

  27. S. Seifeddine, S. Johansson, and I.L. Svensson, The Influence of Cooling Rate and Manganese Content on the β-Al5FeSi Phase Formation and Mechanical Properties of Al-Si-Based Alloys, Mater. Sci. Eng. A, 2008, 490, p 385–390.

    Article  Google Scholar 

  28. M. Arhami, F. Sarioglu, A. Kalkanli, and M. Hashemipour, Microstructural Characterization of Squeeze-Cast Al-8Fe-1.4V-8Si, Mater. Sci. Eng. A, 2008, 485, p 218–223.

    Article  Google Scholar 

  29. X. Cao and J. Campbell, Effect of Precipitation of Primary Intermetallic Compounds on Tensile Properties of Cast Al-11.5Si-0.4Mg Alloy, AFS Trans., 2000, 61, p 391–399.

    Google Scholar 

  30. W.H. Glaisher, Segregation of Iron and Manganese in Some Aluminum Casting Alloys, Metallurgia, 1951, 43, p 127–131.

    CAS  Google Scholar 

  31. J.L. Jorstad, Understanding Sludge, Die Cast. Eng., 1986, 11(12), p 30–36.

    Google Scholar 

  32. M. Honarmand, M. Salehi, S.G. Shabestari, and H. Saghafian, Impact Strength and Structural Refinement of A380 Aluminum Alloy Produced through Gas-Induced Semi-solid Process and Sr Addition, Trans. Nonferrous Met. Soc. China, 2022, 32, p 1405–1415.

    Article  CAS  Google Scholar 

  33. Z.Y. Liu, W.M. Mao, W.P. Wang, and Z.K. Zheng, Preparation of Semi-solid A380 Aluminum Alloy Slurry by Serpentine Channel, Trans. Nonferrous Met. Soc. China, 2015, 25, p 1419–1426.

    Article  CAS  Google Scholar 

  34. Z.Y. Liu, W.M. Mao, T. Wan, G. Cui, and W. Wang, Study on Semi-solid A380 Aluminum Alloy Slurry Prepared by Water-Cooling Serpentine Channel and its Rheo-diecasting, Met. Mater. Int., 2021, 27, p 2067–2077.

    Article  CAS  Google Scholar 

  35. Z.Y. Liu, W.M. Mao, W.P. Wang, Z.K. Zheng, and R. Yue, Investigation of Rheo-diecasting Mold Filling of Semi-solid A380 Aluminum Alloy Slurry, Int. J. Miner Metall. Mater., 2017, 24(6), p 691–700.

    Article  CAS  Google Scholar 

  36. H. Guo, X. Yang, B. Hu, and G. Zhu, Rheo-diecasting Process for Semi-solid Aluminium Alloys, J. Wuhan Univ. Technol. Mater. Sci. Ed., 2007, 22, p 590–595.

    Article  CAS  Google Scholar 

  37. R. Gecu, S. Acar, A. Kisasoz, K.A. Guler, and A. Karaaslan, Microstructural Evaluation of T6-Treated A380 Alloy Manufactured by Semi-solid Metal Casting. In: March 2017 Proceedings of the International Conference on Engineering Technology and Innovation.

  38. S. Gencalp and N. Saklakoglu, Semisolid Microstructure Evolution during Cooling Slope Casting under Vibration of A380 Aluminium Alloy, Mater. Manuf. Process., 2010, 25, p 943–947.

    Article  CAS  Google Scholar 

  39. P. Das, M. Kumar, S.K. Samanta, P. Dutta, and D. Ghosh, Semisolid Processing of A380 Al Alloy Using Cooling Slope, Mater. Manuf. Process., 2014, 29, p 422–428.

    Article  CAS  Google Scholar 

  40. M.M. Shehata, S.E. Hadad, and M.E. Moussa, Optimizing the Pouring Temperature for Semisolid Casting of a Hypereutectic Al-Si Alloy Using the Cooling Slope Plate Method, Int. J. Metalcast., 2021, 15(2), p 488–499.

    Article  CAS  Google Scholar 

  41. M.M. Shehata, S.E. Hadad, and M.E. Moussa, The Combined Effect of Cooling Slope Plate Casting and Mold Vibration on Microstructure, Hardness, and Wear Behavior of Al-Si Alloy (A390), Int. J. Metalcast., 2021, 15(3), p 763–779.

    Article  CAS  Google Scholar 

  42. A.K. Yadav, V. Kumar, and M.S. Ankit, Microstructure and Mechanical Properties of an In-Situ Al 356-Mg2Si-Tib2 Hybrid Composite Prepared by Stir and Cooling Slope Casting, Int. J. Metalcast., 2022 https://doi.org/10.1007/s40962-022-00804-x

    Article  Google Scholar 

  43. P. Das, S.K. Samanta, S. Bera, and P. Dutta, Microstructure Evolution and Rheological Behaviour of Cooling Slope Processed Al-Si-Cu-Fe Alloy Slurry, Metall. Mater. Trans. A, 2016, 47, p 2243–2256.

    Article  CAS  Google Scholar 

  44. P. Das, S.K. Samanta, H. Chattopadhyay, P. Dutta, and B.R.K. Venkatapathi, Microstructural Evolution of A356 Al Alloy during Flow along a Cooling Slope, Trans. Indian Inst. Met., 2012, 65(6), p 669–672.

    Article  CAS  Google Scholar 

  45. S. Nafisi and R. Ghomashchi, Combined Grain Refining and Modification of Conventional and Rheo-cast A356 Al-Si Alloy, Mater. Charact., 2006, 57, p 371–385.

    Article  CAS  Google Scholar 

  46. S. Nafisi and R. Ghomashchi, Grain Refining of Conventional and Semi-solid A356 Al-Si Alloy, J. Mater. Process. Technol., 2006, 174, p 371–383.

    Article  CAS  Google Scholar 

  47. R. Canyook, J. Wannasin, S. Wisuthmethangkul, and M.C. Flemings, Characterization of the Microstructure Evolution of a Semi-solid Metal Slurry during the Early Stages, Acta Mater., 2012, 60, p 3501–3510.

    Article  CAS  Google Scholar 

  48. R. Canyook, S. Petsut, S. Wisutmethangoon, M.C. Flemings, and J. Wannasin, Evolution of Microstructure in Semi-solid Slurries of Rheocast Aluminum Alloy, Trans. Nonferrous Met. Soc. China, 2010, 20, p 1649–1655.

    Article  CAS  Google Scholar 

  49. P. Das, S.K. Samanta, P. Kumar, and P. Dutta, Phase Field Simulation of Equiaxed Microstructure Formation during Semi-solid Processing of A380 Al Alloy, ISIJ Int., 2014, 54(7), p 1601–1610.

    Article  CAS  Google Scholar 

  50. P. Das, S.K. Samanta, H. Chattopadhyay, B.B. Sharma, and P. Dutta, Eulerian Two-Phase Flow Simulation and Experimental Validation of Semisolid Slurry Generation Process Using Cooling Slope, Mater. Sci. Technol., 2013, 29(1), p 83–92.

    Article  CAS  Google Scholar 

  51. P. Das, S.K. Samanta, H. Chattopadhyay, and P. Dutta, Effect of Pouring Temperature on Cooling Channel Semi Solid Slurry Generation Process, Acta Metall. Sin. (Engl. Lett.), 2012, 25(5), p 329–339.

    CAS  Google Scholar 

  52. P. Das, S.K. Samanta, R. Das, and P. Dutta, Optimization of Degree of Sphericity of Primary Phase during Cooling Slope Casting of A356 Al Alloy: Taguchi Method and Regression Analysis, Measurement, 2014, 55, p 605–615.

    Article  Google Scholar 

  53. ASTM Standard E8/E8M, ASTM international, West Conshohocken, PA, 2009. https://doi.org/10.1520/E0008-E0008M-09. www.astm.org.

  54. ASTM Standard E23, 2007ae1. ASTM international. West Conshohocken, PA, 2009. https://doi.org/10.1520/E0023-07AE01. www.astm.org.

  55. F. Taghavi and A. Ghassemi, Study on the Effects of the Length and Angle of Inclined Plate on the Thixotropic Microstructure of A356 Aluminum Alloy, Mater. Des., 2009, 30, p 1762–1767.

    Article  CAS  Google Scholar 

  56. P. Das, S. Dutta, S.K. Samanta, and S. Das, Microscale Deformation Behaviour of Rheocast Al-7Si-03Mg Alloy, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 2016, 230(6), p 1041–1061.

    CAS  Google Scholar 

  57. D. Lehmhus, D. Hünert, U. Mosler, U. Martin, and J. Weise, Effects of Eutectic Modification and Grain Refinement on Microstructure and Properties of PM AlSi7 Metallic Foams, Metals, 2019, 9, p 1241.

    Article  CAS  Google Scholar 

  58. S. Nafisi and R. Ghomashchi, Effects of Modification during Conventional and Semi-solid Metal Processing of A356 Al-Si Alloy, Mater. Sci. Eng. A, 2006, 415, p 273–285.

    Article  Google Scholar 

  59. Z.X. Li, L.T. Ju, X.S. Sheng, T.H. Tao, and J.J. Ze, Microstructure Evolution of A356 Alloy in a Novel Rheocasting Approach, J. Mater. Process. Technol., 2009, 209, p 2092–2098.

    Article  Google Scholar 

  60. L.Y. Zhang, B.D. Zhou, Z.J. Zhan, Y.Z. Jia, S.F. Shan, B.Q. Zhang, and W.K. Wang, Mechanical Properties of Cast A356 Alloy, Solidified at Cooling Rates Enhanced by Phase Transition of a Cooling Medium, Mater. Sci. Eng. A, 2007, 448, p 361–365.

    Article  Google Scholar 

  61. P. Das, S.K. Samanta, B. Mondal, and P. Dutta, Multiphase Model of Semi Solid Slurry Generation and Isothermal Holding during Cooling Slope Rheoprocessing of A356 Al Alloy, Metall. Mater. Trans. B, 2018, 49, p 1925–1944.

    Article  CAS  Google Scholar 

  62. R. Burapa, S. Janudom, T. Chucheep, R. Canyook, and J. Wannasin, Effects of Primary Phase Morphology on Mechanical Properties of Al-Si-Mg-Fe Alloy in Semi-solid Slurry Casting Process, Trans. Nonferrous Met. Soc. China, 2010, 20, p s857–s861.

    Article  Google Scholar 

  63. M.S. Salleh, M.Z. Omar, J. Syarif, and M.N. Mohammed, An Overview of Semisolid Processing of Aluminium Alloys, ISRN Mater. Sci., 2013, 679820, p 1–9.

    Article  Google Scholar 

  64. A. Grajcar, A. Kozłowska, and B. Grzegorczyk, Strain Hardening Behavior and Microstructure Evolution of High-Manganese Steel Subjected to Interrupted Tensile Tests, Metals, 2018, 8, p 122.

    Article  Google Scholar 

  65. Y.M. Kim, S.K. Kim, Y.J. Lim, and N.J. Kim, Effect of Microstructure on the Yield Ratio and Low Temperature Toughness of Linepipe Steels, ISIJ Int., 2002, 42, p 1571–1577.

    Article  CAS  Google Scholar 

  66. G.T. Gray, Deformation Twinning in Al-4.8 wt.% Mg, Acta metall., 1988, 36(7), p 1745–1754.

    Article  CAS  Google Scholar 

  67. B. Gruber, I. Weißensteiner, T. Kremmer, F. Grabner, G. Falkinger, A. Schokel, F. Spieckermann, R. Schaublin, P.J. Uggowitzer, and S. Pogatscher, Mechanism of Low Temperature Deformation in Aluminium Alloys, Mater. Sci. Eng. A, 2020, 795, p 139935.

    Article  CAS  Google Scholar 

  68. M. Merlin, G. Timelli, F. Bonollo, and G.L. Garagnania, Impact Behaviour of A356 Alloy for Low-Pressure Die Casting Automotive Wheels, J. Mater. Process. Technol., 2009, 209, p 1060–1073.

    Article  CAS  Google Scholar 

  69. N.D. Alexopoulos and A. Stylianos, Impact Mechanical Behaviour of Al-7Si-Mg (A357) Cast Aluminum Alloy. The Effect of Artificial Aging, Mater. Sci. Eng. A, 2011, 528, p 6303–6312.

    Article  CAS  Google Scholar 

  70. C.D. Lee, Variability in the Impact Properties of A356 Aluminum Alloy on Micro Porosity Variation, Mater. Sci. Eng. A, 2013, 565, p 187–195.

    Article  CAS  Google Scholar 

  71. A.F. Boostani and S. Tahamtan, Effect of a Novel Thixoforming Process on the Microstructure and Fracture Behavior of A356 Aluminum Alloy, Mater. Des., 2010, 31, p 3769–3776.

    Article  Google Scholar 

  72. S. Tahamtan, A.F. Boostani, and H. Nazemi, Mechanical Properties and Fracture Behavior of Thixoformed, Rheocast and Gravity-Cast A356 Alloy, J. Alloy. Compd., 2009, 468, p 107–114.

    Article  CAS  Google Scholar 

  73. S. Tahamtan, M.A. Golozar, F. Karimzadeh, and B. Niroumand, Microstructure and Tensile Properties of Thixoformed A356 Alloy, Mater. Charact., 2008, 59, p 223–228.

    Article  CAS  Google Scholar 

  74. A.A. Griffith, The Phenomena of Rupture and Flow in Solids, London, Philos. Trans. R. Soc. A, 1920, 221, p 163–190.

    Google Scholar 

  75. E.R. Wang, X.D. Hui, S.S. Wang, Y.F. Zhao, and G.L. Chen, Improved Mechanical Properties in Cast Al-Si Alloys by Combined Alloying of Fe and Cu, Mater. Sci. Eng. A, 2010, 527, p 7878–7884.

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank SERB, DST, Government of India, and CSIR, Government of India, for their financial support to this work vide Grant No. SB/EMEQ-449/2014 and OLP121212, respectively. The author would also like to thank the personnel of the erstwhile NNMT group and Central Research Facility, CSIR-CMERI, for their cooperation and cordial help toward successful completion of this research work. The author would like to thank the Metallurgy Dept., NIT Durgapur, for extending mechanical characterization facilities. Finally, the author would like to express his gratitude to Director, IISc, for his encouragements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prosenjit Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, P. Microstructural Morphology and Mechanical Properties of Cooling Slope Rheocast A380 Al Alloy. J. of Materi Eng and Perform 32, 8120–8139 (2023). https://doi.org/10.1007/s11665-022-07709-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07709-0

Keywords

Navigation