Skip to main content
Log in

Investigation of Fatigue Small Crack Propagation Behavior in Superalloy FGH96 under Different Stress Ratios

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The characteristic analysis of fatigue small crack propagation behavior of superalloy FGH96 in a plane stress state was carried out based on a series of in situ scanning electron microscope fatigue tests. The influence of microstructure on fatigue small crack propagation behavior of superalloy FGH96 under the different stress ratios was investigated. The results indicated that the fatigue small crack growth rates showed obvious dependence on stress ratios, following as R = 0.5 > R = 0.2 > R = 0.1. Fatigue small crack propagation behavior of superalloy FGH96 occurred preferentially plastic slipping on grains surface and then resulted in a mixed model of intergranular and transgranular fracture during the fatigue small crack evolution. The effects of microstructural inhomogeneities (e.g., grain boundaries, defects, crystal orientation) on deflection and branching of fatigue small crack propagation were also evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

a :

Crack length, μm

b :

The depth of the notch, μm

da/dN :

Fatigue crack propagation rate

C, n :

Fitted parameters in Paris formula

C 0, n 0, m :

Fitted parameters in Walker formula

COD:

Crack opening displacement

E :

Young’s modulus, GPa

EBSD:

Electron backscattering diffraction

FSCGR:

Fatigue small crack growth rate

GB:

Grain boundary

HIP:

Hot isostatic pressing

IPF:

Inverse pole figure

ΔK :

Stress intensity factor range, MPa·m1/2

ΔK th :

Threshold of stress intensity factor range, MPa·m1/2

KAM:

Kernel average misorientation

N :

Cycle number

R :

Stress ratio

SEM:

Scanning electron microscope

SIF:

Stress intensity factor

W :

The width of specimen, μm

σ max :

Maximum stress, MPa

σ 0 .2 :

0.2% Offset yield strength, MPa

σ b :

Ultimate tensile strength, Mpa

Δσ :

The stress range, MPa

δ :

Elongation ratio, %

References

  1. H. Andersson and C. Persson, In-situ SEM Study of Fatigue Crack Growth Behaviour in IN718, Int. J. Fatigue, 2004, 26, p 211–219.

    Article  CAS  Google Scholar 

  2. A. Kalyon, O. Palavar and D. Ozyurek, An Investigation of the Wear Performance of Aged Inconel 718 Superalloy by the Fuzzy Logic Approach, J. Mater. Eng. Perform., 2019, 28(5), p 2865.

    Article  Google Scholar 

  3. W.M. Guo, J.T. Wu, F.G. Zhang and M.H. Zhao, Microstructure, Properties and Heat Treatment Process of Powder Metallurgy Superalloy FGH95, J. Iron Steel Res. Int., 2006, 13(5), p 65–68.

    Article  CAS  Google Scholar 

  4. H. Yang, B. Rui, J. Zhang, P. Lei and B. Fei, Crack Growth Behaviour of a Nickel-Based Powder Metallurgy Superalloy under Elevated Temperature, Int. J. Fatigue, 2011, 33(4), p 632–641.

    Article  CAS  Google Scholar 

  5. J. Mao, V.L. Keefer, K.M. Chang and D. Furrer, An Investigation on Quench Cracking Behavior of Superalloy Udimet 720LI Using a Fracture Mechanics Approach, J. Mater. Eng. Perform., 2000, 9(2), p 113–124.

    Article  Google Scholar 

  6. X. Zhu, C. Gong, Y.F. Jia, R. Wang, C. Zhang, Y. Fu, S.T. Tu and X.C. Zhang, Influence of Grain Size on the Small Fatigue Crack Initiation and Propagation Behaviors of a Nickel-Based Superalloy at 650 °C, J. Mater. Sci. Technol., 2019, 35(8), p 11.

    Article  Google Scholar 

  7. J.M. Luo and P. Bowen, Small and Long Fatigue Crack Growth Behaviour of a PM Ni-based Superalloy, Udimet 720, Int. J. Fatigue, 2004, 26(2), p 113–124.

    Article  CAS  Google Scholar 

  8. R.R. Stephens, L. Grabowski and D.W. Hoeppner, The Effect of Temperature on the Behaviour of Short Fatigue Cracks in Waspaloy Using an in situ SEM Fatigue Apparatus, Int. J. Fatigue, 1993, 15(4), p 273–282.

    Article  CAS  Google Scholar 

  9. S. Suresh, Fatigue of materials, Cambridge University Press, Fatigue of materials, 1998.

    Book  Google Scholar 

  10. Y.M. Hu, W. Floer, U. Krupp and H.J. Christ, Microstructurally Short Fatigue Crack Initiation and Growth in Ti-6.8 Mo-4.5 Fe-1.5 Al, Mater. Sci. Eng. A, 2000, 278(1–2), p 170–180.

    Article  CAS  Google Scholar 

  11. X.F. Ma, H.J. Shi, J.L. Gu, G.F. Chen, O. Luesebrink and H. Hardersd, In-situ Observations of the Effects of Orientation and Carbide on Low Cycle Fatigue Crack Propagation in a Single Crystal Superalloy, Procedia Eng., 2010, 2(1), p 2287–2295.

    Article  Google Scholar 

  12. X.P. Zhang, C.H. Wang, W. Chen, L. Ye and Y.W. Mai, Investigation of Short Fatigue Cracks in Nickel-Based Single Crystal Superalloy SC16 by in-situ SEM Fatigue Testing, Scripta mater., 2001, 44(10), p 2443–2448.

    Article  CAS  Google Scholar 

  13. X.F. Ma, H.L. Zhai, L. Zuo, W.J. Zhang, S.S. Rui, Q.N. Han, J.S. Jiang, C.P. Li, G.F. Chen and G.A. Qian, Fatigue Short Crack Propagation Behavior of Selective Laser Melted Inconel 718 alloy by in-situ SEM Study: Influence of Orientation and Temperature, Int. J. Fatigue, 2020, 139, p 105739.

    Article  CAS  Google Scholar 

  14. Z.W. Xu, A. Liu and X.S. Wang, Influence of Macrozones on the Fatigue Cracking Behavior and Fracture Mechanisms of Rolled Ti-6Al-4V Alloy, Mater. Sci. Eng. A, 2021, 824, p 141824.

    Article  CAS  Google Scholar 

  15. Z.W. Xu, A. Liu and X.S. Wang, Fatigue Performance Differences Between Rolled and Selective Laser Melted Ti6Al4V Alloys, Mater. Character., 2022, 189, p 111963.

    Article  CAS  Google Scholar 

  16. W.P. Li, X.G. Wang, B. Liu, Q.H. Fang and C. Jiang, Fracture Mechanisms of a Mo Alloyed CoCrFeNi High Entropy Alloy: In-situ SEM Investigation, Mater. Sci. Eng. A, 2018, 723, p 79–88.

    Article  CAS  Google Scholar 

  17. M.J. Caton, Predicting fatigue properties of cast aluminum by characterizing small-crack propagation behavior, University of Michigan, 2001.

    Google Scholar 

  18. J.J. Newman, P.R. Edwards, Short-Crack Growth Behaviour in an Aluminum Alloy-an AGARD Cooperative Test Programme, AGARD Report #732, 1988

  19. ASTM E407–07, Standard Practice for Microetching Metals and Alloys, ASTM Int. 2015

  20. M.J. Zhang, F.G. Li, B. Chen and S.Y. Wang, Investigation of Micro-Indentation Characteristics of P/M Nickel-Base Superalloy FGH96 Using Dislocation-Power Theory, Mater. Sci. Eng. A, 2012, 535, p 170–181.

    Article  CAS  Google Scholar 

  21. S. Zhang, X. Yuanming, F. Hao, Y. Wen, Y. Wang and Xnling Liu, Low-Cycle Fatigue Crack Initiation Simulation and Life Prediction of Powder Superalloy Considering Inclusion-Matrix Interface Debonding, Materials, 2021, 14(14), p 4018.

    Article  CAS  Google Scholar 

  22. Z.C. Peng, J.W. Zou, J. Yang, G.F. Tian and X.Q. Wang, Influence of γ’precipitate on Deformation and Fracture During Creep in PM Nickel-Based Superalloy, Prog. Nat. Sci., 2021, 31(2), p 303–309.

    Article  CAS  Google Scholar 

  23. P.Z. Chao, J.W. Zou, J. Yang, G.F. Tian and X.Q. Wang, Influence of γ’ Precipitate on Deformation and Fracture During Creep in PM Nickel-Based Superalloy, Prog. Nat. Sci., 2021, 31, p 303–309.

    Article  Google Scholar 

  24. X.S. Wang and J.H. Fan, SEM Online Investigation of Fatigue Crack Initiation and Propagation in Cast Magnesium Alloy, J. Mater. Sci., 2004, 39(7), p 2617–2620.

    Article  CAS  Google Scholar 

  25. X.S. Wang and J.H. Fan, An Evaluation on the Growth Rate of Small Fatigue Cracks in Cast AM50 Magnesium Alloy at Different Temperatures in Vacuum Conditions, Int. J. Fatigue, 2006, 28(1), p 79–86.

    Article  Google Scholar 

  26. W.M. Guo, J.X. Dong, J.T. Wu, F.G. Zhang, G.S. Chen and S. Chen, Microstructure and Properties of PM Superalloys FGH 96, J. Iron Steel Res. Int., 2005, 17, p 59–63.

    Google Scholar 

  27. H. Nisitani, M. Goto and N. Kawagoishi, A Small Crack Growth Law and its Related Phenomena, Eng. Frac. Mech., 1992, 41, p 499–513.

    Article  Google Scholar 

  28. X.S. Wang, H.H. Ren, B.S. Wu, S. Ja and N. Kawagoishi, Effect of Loading Type on Fatigue Crack Growth Behavior of Solder Joint in Electronic Packaging, Acta Mech. Solida Sin., 2014, 27(3), p 246–258.

    Article  Google Scholar 

  29. Y. Furuya, Small Internal Fatigue Crack Growth Rate Measured by Beach Marks, Mater. Sci. Eng. A, 2016, 678, p 260–266.

    Article  CAS  Google Scholar 

  30. P. Paris and F. Erdogan, A Critical Analysis of Crack Propagation Laws, J. Fluids Eng., 1963, 85(4), p 528–533.

    CAS  Google Scholar 

  31. E.K. Walker, The effect of load ratio during crack propagation and fatigue for 2024-T3 and 7075-T6 aluminum. ASTM STP 462, American Society for Testing and Materials, 1970. pp. 1–14

  32. S. Gribbin, S. Ghorbanpour, N. Ferreri, J. Bicknell, I. Tsukrov and M. Knezevic, Role of Grain Structure, Grain Boundaries, Crystallographic Texture, Precipitates, and Porosity on Fatigue Behavior of Inconel 718 at Room and Elevated Temperatures, Mater. Charact., 2019, 149, p 184–197.

    Article  CAS  Google Scholar 

  33. Y.H. Zhang and L. Edwards, On the Blocking Effect of Grain Boundaries on Small Crystallographic Fatigue Crack Growth, Mater. Sci. Eng. A, 1994, 188(1–2), p 121–132.

    Article  Google Scholar 

  34. A. Liu, Z.W. Xu, Z. Liang and X.S. Wang, An Evaluation on High Cycle Fatigue Fracture Characteristics of 2024–T351 Al Alloy with Different Surface Defects, Mech. Mater., 2022, 164, p 104133.

    Article  Google Scholar 

  35. D. Zhang, P.D. Zhong, C.H. Tao and S.Z. Lei, Failure Analysis, National Defense Industry Press, Beijing, 2004, p 98–103

    Google Scholar 

  36. X.F. Ma, H.J. Shi, J.L. Gu, Z.X. Wang, H. Harders and T. Malow, Temperature Effect on Low-Cycle Fatigue Behavior of Nickel-Based Single Crystalline Superalloy, Acta. Mech. Solida SIin., 2008, 21(4), p 289–297.

    Article  Google Scholar 

  37. M.D. Halliday, P. Poole and P. Bowen, In situ SEM Measurements of Crack Closure for Small Fatigue Cracks in Aluminium 2024–T351, Int. J. Fatigue, 1996, 6(18), p 420.

    Google Scholar 

  38. K. Donald and P.C. Paris, An Evaluation of ΔKeff Estimation Procedures on 6061–T6 and 2024–T3 Aluminum Alloys, Int. J. Fatigue, 1999, 21, p S47–S57.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by National Science and Technology Major Project, Grant Number [No. 2017-IV-0004-0041] and the National Natural Science Foundation of China [No. 11872225].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. S. Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, A., Liang, Z., Wang, X.S. et al. Investigation of Fatigue Small Crack Propagation Behavior in Superalloy FGH96 under Different Stress Ratios. J. of Materi Eng and Perform 32, 5554–5565 (2023). https://doi.org/10.1007/s11665-022-07505-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07505-w

Keywords

Navigation