Skip to main content

Advertisement

Log in

Ultrafine Carbide-Free Bainite in High-Carbon Steel After Continuous Annealing with Different Cooling Rates

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In addition to conventional isothermal heat treatment, ultrafine carbide-free bainite can be obtained by continuous annealing of steels, which is of great interest to scientists and research communities. The resulting microstructure consists of bainitic sheaves composed of bainitic ferrites interwoven with austenite films in nanoscale, being separated by austenite microblocks resulting in GPa-strength level. This article aims to investigate the microstructural characteristics and impact toughness of high-carbon steel after continuous cooling heat treatment at cooling rates of 0.1, 0.15, 0.2 and 0.3 °C/min. Results indicated that bainitic ferrites and austenite films of less than 270 nm and different volume fractions of bainitic sheaves and high carbon retained austenite could be attained. Wider size distribution of bainitic ferrites was achieved by a slower cooling rate due to the progressive transformation of the primary austenite to bainite. Finally, it has been shown that impact toughness values were increased by decreasing the cooling rate of the steel due to a more effective TRIP effect and obtaining more bainitic sheaves with different orientations, while premature bainite transformation and the presence of martensite deteriorated the impact toughness when the highest cooling rate was applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H.K.D.H. Bhadeshia, Bainite in Steels, 2nd ed. Institute of Materials, London, 2001.

    Google Scholar 

  2. H.K.D.H. Bhadeshia and R.W.K. Honeycombe, Steel, Microstructure and Properties, Butterworths- Heinemann (Elsevier), Amsterdam, 2006.

  3. X.Y. Long, J. Kang, B. Lv and F.C. Zhang, Carbide-Free Bainite in Medium Carbon Steel, Mater. Des., 2014, 64, p 237–245.

    Article  CAS  Google Scholar 

  4. M.-X.Zhang and P. M.Kelly, Crystallography of Carbide-Free Bainite in a Hard Bainitic Steel, Mater. Sci. Eng. 438–440, 272–275 (2006)

  5. S. Chatterjee and H.K.D.H. Bhadeshia, Transformation Induced Plasticity Assisted Steels: Stress or Strain Affected Martensitic Transformation, Mater. Sci. Technol., 2007, 23, p 1101–1104.

    Article  CAS  Google Scholar 

  6. M. Soleimani, A. Kalhor and H. Mirzadeh, Transformation-Induced Plasticity (TRIP) in Advanced Steels: A Review, Mater. Sci. Eng. A, 2020, 795, p 140023.

    Article  CAS  Google Scholar 

  7. C. García-Mateo, F.G. Caballero and H.K.D.H. Bhadeshia, Development of Hard Bainite, ISIJ Int., 2003, 43, p 1238–1243.

    Article  Google Scholar 

  8. C. Garcia-Mateo, F.G. Caballero and H.K.D.H. Bhadeshia, Low Temperature Bainite, J. Phys. IV, 2003, 112, p 285–288.

    CAS  Google Scholar 

  9. C. García-Mateo and H.K.D.H. Bhadeshia, Nucleation Theory for High-Carbon Bainite, Mater. Sci. Eng. A, 2004, 378, p 289–292.

    Article  Google Scholar 

  10. F.G. Caballero, H.K.D.H. Bhadeshia, K.J.A. Mawella, D.G. Jones and P. Brown, Very Strong Low Temperature Bainite, Mater. Sci. Technol., 2002, 18, p 279–284.

    Article  CAS  Google Scholar 

  11. B. Avishan, S. Yazdani, F.G. Caballero, T. Wang and C. Garcia-Mateo, Characterisation of Microstructure and Mechanical Properties in Two Different Nanostructured Bainitic Steels, Mater. Sci. Technol., 2015, 31, p 1508–1520.

    Article  CAS  Google Scholar 

  12. B. Avishan, C. Garcia-Mateo, L. Morales-Rivas, S. Yazdani and F.G. Caballero, Strengthening and Mechanical Stability Mechanisms in Nanostructured Bainite, J. Mater. Sci., 2013, 68, p 6121–6132.

    Article  Google Scholar 

  13. F.G. Caballero, S. Allain, J. Cornide, J. Puerta Velásquez, C. Garcia-Mateo, and M. Miller, Design of Cold Rolled and Continuous Annealed Carbide-Free Bainitic Steels For Automotive Application, Mater. Des. 49, 667–680 (2013)

  14. B. Avishan, M.A.A. Jani and S. Yazdani, Hardenability of Nanocrystalline Bulk Steel, Trans. Indian Inst. Met., 2018, 71(2), p 493–503.

    Article  CAS  Google Scholar 

  15. Y.X. Zhou, X.T. Song, J.W. Liang, Y.F. Shen and R.D.K. Misra, Innovative Processing of Obtaining Nanostructured Bainite with High Strength–High Ductility Combination in Low-Carbon-Medium-Mn Steel, Mater. Sci. Eng. A, 2018, 718, p 267–276.

    Article  CAS  Google Scholar 

  16. S. Babu, S. Vogel, C. Garcia-Mateo, B. Clausen, L. Morales-Rivas and F.G. Caballero, Microstructure Evolution During Tensile Deformation of a Nanostructured Bainitic Steel, Scr. Mater., 2013, 69, p 777–780.

    Article  CAS  Google Scholar 

  17. C. Garcia-Mateo, F.G. Caballero and H.K.D.H. Bhadeshia, Mechanical Properties of Low-Temperature Bainite, Mater. Sci. Forum, 2005, 500, p 495–502.

    Article  Google Scholar 

  18. W.J. Dan, S.H. Li, W.G. Zhang and Z.Q. Lin, The Effect of Strain-Induced Martensitic Transformation on Mechanical Properties of TRIP Steel, Mater. Des., 2008, 29, p 604–6012.

    Article  CAS  Google Scholar 

  19. Y.F. Shen, L.N. Qiu, X. Sun, L. Zuo, P.K. Liaw and D. Raabe, Effects of Retained Austenite Volume Fraction, Morphology, and Carbon Content on Strength and Ductility of Nanostructured TRIP-Assisted Steels, Mater. Sci. Eng. A, 2015, 636, p 551–564.

    Article  CAS  Google Scholar 

  20. C. Garcia-Mateo, F.G. Caballero, J. Chao, C. Capdevila and C. Garcia de Andres, Mechanical Stability of Retained Austenite During Plastic Deformation of Super High Strength Carbide Free Bainitic Steels, J. Mater. Sci., 2009, 44, p 4617–4624.

    Article  CAS  Google Scholar 

  21. P. Jacques, F. Delannay and J. Ladrière, On the Influence of Interactions Between Phases on the Mechanical Stability of Retained Austenite in Transformation-Induced Plasticity Multiphase Steels, Metall. Mater. Trans. A, 2001, 32, p 2759–2768.

    Article  Google Scholar 

  22. B. Avishan, M. Tavakolian and S. Yazdani, Two-Step Austempering of High Performance Steel with Nanoscale Microstructure, Mater. Sci. Eng. A, 2017, 693, p 178–185.

    Article  CAS  Google Scholar 

  23. J. He, A. Zhao, C. Zhi and H. Fan, Acceleration of Nanobainite Transformation by Multi-Step Ausforming Process, Scr. Mater., 2015, 107, p 71–74.

    Article  CAS  Google Scholar 

  24. C. Chu, Y. Qin, X. Li, Z. Yang, F. Zhang, C. Guo, X. Long and L. You, Effect of Two-Step Austempering Process on Transformation Kinetics of Nanostructured Bainitic Steel, Materials, 2019, 12, p 166–175.

    Article  CAS  Google Scholar 

  25. H. Mousalou, S. Yazdani, B. Avishan, N.P. Ahmadi, A. Chabok and Y. Pei, Microstructural and Mechanical Properties of Low-Carbon Ultra-Fine Bainitic Steel Produced by Multi-Step Austempering Process, Mater. Mater. Sci. Eng. A, 2018, 734, p 329–337.

    Article  CAS  Google Scholar 

  26. X. Wang, K. Wu, F. Hu, L. Yu and X. Wan, Multi-Step Isothermal Bainitic Transformation In Medium-Carbon Steel, Scr. Mater., 2014, 74, p 56–59.

    Article  CAS  Google Scholar 

  27. H.K.D.H. Bhadeshia, New Bainitic Steels by Design, Modelling and Simulation for Materials Design, 227–232 (1998)

  28. G. Gomez, T. Pérez and H.K.D.H. Bhadeshia, Strong Bainitic Steels by Continuous Cooling Transformation, New Dev. Metall. Appl. High Strength Steels, 2008, 2008(1), p 571–582.

    Google Scholar 

  29. X. Chen, F. Wang, C. Li and J. Zhang, Dynamic Continuous Cooling Transformation, Microstructure And Mechanical Properties of Medium-Carbon Carbide-Free Bainitic Steel, High Temp. Mater. Processes, 2020, 39, p 304–316.

    Article  CAS  Google Scholar 

  30. L. Morales-Rivas, H. Roelofs, S. Hasler, C. Garcia-Mateo and F.G. Caballero, Complex Microstructural Banding of Continuously Cooled Carbide-Free Bainitic Steels, Mater. Sci. Forum, 2014, 783, p 980–985.

    Article  Google Scholar 

  31. F.G. Caballero, H.K.D.H. Bhadeshia, K. Mawella, D. Jones and P. Brown, Design of Novel High Strength Bainitic Steels: Part 1, Mater. Sci. Technol., 2001, 17, p 512–516.

    Article  CAS  Google Scholar 

  32. F.G. Caballero, H.K.D.H. Bhadeshia, K. Mawella, D. Jones and P. Brown, Design of Novel High Strength Bainitic Steels: Part 2, Mater. Sci. Technol., 2001, 17, p 517–522.

    Article  CAS  Google Scholar 

  33. F.G. Caballero, C. Garcia-Mateo, J. Chao, M.J. Santofimia, C. Capdevila and C.G. De Andres, Effects of Morphology and Stability of Retained Austenite on The Ductility of TRIP-Aided Bainitic Steels, ISIJ Int., 2008, 48, p 1256–1262.

    Article  CAS  Google Scholar 

  34. P. Clayton and N. Jin, Unlubricated Sliding and Rolling/Sliding Wear Behavior of Continuously Cooled, Low/Medium Carbon Bainitic Steels, Wear, 1996, 200, p 74–82.

    Article  CAS  Google Scholar 

  35. H.K.D.H. Bhadeshia, Advances in the Kinetic Theory of Carbide Precipitation, Mater. Sci. Forum, 35–42 (2003)

  36. H.K.D.H. Bhadeshia, M. Lord and L.-E. Svensson, Silicon-Rich Bainitic Steel Welds (Materials, Metallurgy & Weldability, Trans. JWRI, 2003, 32, p 91–96.

    CAS  Google Scholar 

  37. S.H. Song, R.G. Faulkner and P.E.J. Flewitt, Quenching and Tempering-Induced Molybdenum Segregation to Grain Boundaries in a 2.25 Cr–1Mo Steel, Mater. Sci. Eng. A, 2000, 281, p 23–27.

    Article  Google Scholar 

  38. C. Garcia-Mateo, F.G. Caballero and H.K.D.H. Bhadeshia, Acceleration of Low-Temperature Bainite, ISIJ Int., 2003, 43, p 1821–1825.

    Article  CAS  Google Scholar 

  39. L.C. Chang and H.K.D.H. Bhadeshia, Austenite Films in Bainitic Microstructures, Mater. Sci. Technol., 1995, 11, p 874–881.

    Article  CAS  Google Scholar 

  40. B.D. Cullity and S.R. Stock, Elements of X-Ray diffraction, 3rd ed. Prentice Hall, NewYork, 2001.

    Google Scholar 

  41. D.J. Dyson and B. Holmes, Effect of Alloying Additions on the Lattice Parameter of Austenite, J. Iron. Steel. Inst., 1970, 208, p 469–474.

    CAS  Google Scholar 

  42. H. Matsuda and H.K.D.H. Bhadeshia, Kinetics of the bainite transformation, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 460 (2004) 1707–1722.

  43. R. Ranjan and S.B. Singh, Isothermal Bainite Transformation In Low-Alloy Steels: Mechanism of Transformation, Acta. Mater., 2021, 202, p 302–316.

    Article  CAS  Google Scholar 

  44. H.K.D.H. Bhadeshia and J. Christian, Bainite in Steels, Metall. Trans. A, 1990, 21, p 767–797.

    Article  Google Scholar 

  45. F.G. Caballero, M.K. Miller, C. Garcia-Mateo, J. Cornide and M.J. Santofimia, Temperature Dependence of Carbon Supersaturation of Ferrite in Bainitic Steels, Scr. Mater., 2012, 67, p 846–849.

    Article  Google Scholar 

  46. F.G. Caballero, M. Miller, C. Garcia-Mateo and J. Cornide, New Experimental Evidence of the Diffusionless Transformation Nature of Bainite, J. Alloys Compd., 2013, 577, p 626–630.

    Article  Google Scholar 

  47. A. Kammouni, W. Saikaly, M. Dumont, C. Marteau, X. Bano and A. Charaï, Effect of the Bainitic Transformation Temperature On Retained Austenite Fraction and Stability in Ti Microalloyed TRIP Steels, Mater. Sci. Eng. A, 2009, 518, p 89–96.

    Article  Google Scholar 

  48. H.K.D.H. Bhadeshia, Materials Algorithms Project, available at https://www.msm.cam.ac.uk/map/steel/programs/mucg83.html

  49. S.B. Singh and H.K.D.H. Bhadeshia, Estimation of Bainite Plate-Thickness in Low-Alloy Steels, Mater. Sci. Eng. A, 1998, 245, p 72–79.

    Article  Google Scholar 

  50. B. Avishan, S. Yazdani and S.H. Nedjad, Toughness Variations in Nanostructured Bainitic Steels, Mater. Sci. Eng. A, 2012, 548, p 106–111.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to Sahand University of Technology for providing the research facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Behzad Avishan or Sasan Yazdani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avishan, B., Karimkhani Shamloo, R., Akbarzadeh Chiniforoush, E. et al. Ultrafine Carbide-Free Bainite in High-Carbon Steel After Continuous Annealing with Different Cooling Rates. J. of Materi Eng and Perform 32, 4922–4931 (2023). https://doi.org/10.1007/s11665-022-07446-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07446-4

Keywords

Navigation