Skip to main content
Log in

Producing Nanobainite on Carburized Surface of a Low-Carbon Low-Alloy Steel

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Conducting the carburizing process on the surface layer of low-carbon steel and subsequent austempering heat treatment can be implemented to obtain nanobainite microstructure on the surface of steels. In this research, steel with 0.23 wt.% carbon was carburized for 3 h at 900 °C in a liquid salt bath containing sodium cyanide, sodium carbonate, and sodium chloride and immediately quenched to room temperature. The samples were then heated to 900 °C for 30 min and isothermally transformed at three different temperatures of 200, 250 and 300 °C for 72, 24 and 12 h, respectively. It was found that nanostructured bainite was formed on the surface layer and the subunits of bainitic ferrite and high-carbon austenite films were almost 60-300 nm thick depending on the heat treatment temperature. It was also found that the samples austempered at these temperatures contained 18, 21 and 28% volume fractions of retained austenite on the surfaces, respectively. Due to the comparable microstructural characteristics, similar friction coefficients were obtained as for ordinary nanostructured bulk bainitic steels with high-carbon content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H.K.D.H. Bhadeshia, Bainite in Steels, 2nd ed. Institute of Materials, London, 2001.

    Google Scholar 

  2. C. García Mateo, F.G. Caballero, and H.K.D.H. Bhadeshia, Development of Hard Bainite, ISIJ Int., 2003, 43, p 1238–1243.

    Article  Google Scholar 

  3. F.G. Caballero, R. Rementeria, L. Morales-Rivas, M. Benito-Alfonso, J.R. Yang, D. De Castro, J.D. Poplawsky, T. Sourmail, and C. Garcia-Mateo, Understanding Mechanical Properties of Nano-Grained Bainitic Steels from Multiscale Structural Analysis, Metals, 2019, 9, p 426–434.

    Article  CAS  Google Scholar 

  4. A. Kumar and A. Singh, Mechanical properties of nanostructured bainitic steels, Materialia, 2021, 15, 101034.

    Article  CAS  Google Scholar 

  5. H. Lan, L. Du, N. Zhou, and X. Liu, Effect of Austempering Route on Microstructural Characterization of Nanobainitic Steel, Acta Metall. Sin. Engl. Lett., 2014, 27, p 19–26.

    Article  CAS  Google Scholar 

  6. Y. Huang, A. Zhao, J. He, X. Wang, Z. Wang, and L. Qi, Microstructure, Crystallography and Nucleation Mechanism of NANOBAIN Steel, Int. J. Miner. Metall., 2013, 20, p 1155–1163.

    Article  CAS  Google Scholar 

  7. T. Sourmail, C. Garcia-Mateo, F.G. Caballero, L. Morales-Rivas, R. Rementeria, and M. Kuntz, Tensile Ductility of Nanostructured Bainitic Steels: Influence of Retained Austenite Stability, Metals, 2017, 7, p 31–37.

    Article  Google Scholar 

  8. C.N. Hulme-Smith and H.K.D.H. Bhadeshia, Mechanical Properties of Thermally-Stable, Nanocrystalline Bainitic Steels, Mater. Sci. Eng. A, 2017, 700, p 714–720.

    Article  CAS  Google Scholar 

  9. L. Morales-Rivas, C. Garcia-Mateo, T. Sourmail, M. Kuntz, R. Rementeria, and F.G. Caballero, Ductility of Nanostructured Bainite, Metals, 2016, 6(12), p 302–321.

    Article  Google Scholar 

  10. H.K.D.H. Bhadeshia, Bulk Nanocrystalline Steel, Ironmak. Steelmak., 2005, 32, p 405–410.

    Article  CAS  Google Scholar 

  11. O. Ríos-Diez, R. Aristizábal-Sierra, C. Serna-Giraldo, J.A. Jimenez, and C. Garcia-Mateo, Development of Nanobainitic Microstructures in Carbo-Austempered Cast Steels: Heat Treatment, Microstructure and Properties, Metals, 2020, 10, p 635–652.

    Article  Google Scholar 

  12. C. Garcia-Mateo, G. Paul, M.C. Somani, D.A. Porter, L. Bracke, A. Latz, Garcia De Andres, and F.G. Caballero, Transferring Nanoscale Bainite Concept to Lower C Contents: A Perspective, Metals, 2017, 7, p 159–172.

    Article  Google Scholar 

  13. H. Mousalou, S. Yazdani, N. Parvini Ahmadi, and B. Avishan, Nanostructured Carbide-Free Bainite Formation in Low Carbon Steel, Acta Metall. Sin. Engl. Lett., 2020, 33, p 1635–1644.

    Article  CAS  Google Scholar 

  14. H. Mousalou, S. Yazdani, B. Avishan, N. Parvini Ahmadi, A. Chabok, and Y. Pei, Microstructural and Mechanical Properties of Low-carbon Ultra-Fine Bainitic Steel Produced by Multi-Step Austempering Process, Mater. Sci. Eng. A, 2018, 734, p 329–337.

    Article  CAS  Google Scholar 

  15. A. Eres-Castellanos, L. Morales-Rivas, A. Latz, F.G. Caballero, and C. Garcia-Mateo, Effect of Ausforming on the Anisotropy of Low Temperature Bainitic Transformation, Mater. Charact., 2018, 145, p 371–380.

    Article  CAS  Google Scholar 

  16. M. Zhang, Y. Wang, C. Zheng, F. Zhang, and T. Wang, Effects of Ausforming on Isothermal Bainite Transformation Behaviour and Microstructural Refinement in Medium-Carbon Si–Al-Rich Alloy Steel, Mater. Des., 2014, 62, p 168–174.

    Article  CAS  Google Scholar 

  17. V.G. Efremenko, O. Hesse, Th. Friedrich, M. Kunert, M.N. Brykov, K. Shimizu, V.I. Zurnadzhy, and P. Šuchmann, Two-Body Abrasion Resistance of High-Carbon High-Silicon Steel: Metastable Austenite vs Nanostructured Bainite, Wear, 2019, 418–419, p 24–35.

    Article  Google Scholar 

  18. Y. Du, X. Wang, D. Zhang, X. Wang, C. Ju, and B. Jiang, A Superior Strength and Sliding Wear Resistance Combination of Ductile Iron with Nanobainitic Matrix, J. Mater. Res. Technol., 2021, 11, p 1175–1183.

    Article  CAS  Google Scholar 

  19. Z. Yang, F. Zhang, Nanostructured Bainitic Bearing Steel, ISIJ Int., 2020, p. 18-30.

  20. K. Hayrynen, K. Brandenberg, and J. R. Keough, "Carbo-Austempering™-A New Wrinkle?" SAE Technical paper; SAE: Warrendale, PA, USA, 2002

  21. O. Ríos-Diez, R. Aristizábal-Sierra, C. Serna-Giraldo, A. Eres-Castellanos, and C. Garcia-Mateo, Wear behavior of nanostructured carboaustempered cast steels under rolling-sliding conditions, J. Mater. Res. Technol., 2021, 11, p 1343–1355.

    Article  Google Scholar 

  22. H.K.D.H. Bhadeshia, Materials Algorithms Project, available at https://www.msm.cam.ac.uk/map/steel/programs/mucg83.html

  23. L.C. Chang and H.K.D.H. Bhadeshia, Austenite Films in Bainitic Microstructures, J. Mater. Sci. Technol., 1995, 11, p 874–881.

    Article  CAS  Google Scholar 

  24. D.J. Dyson and B. Holmes, Effect of Alloying Additions on the Lattice Parameter of Austenite, J. Iron Steel Ins., 1970, 208, p 469–474.

    CAS  Google Scholar 

  25. B.D. Cullity and S.R. Stock, Elements of X-ray Diffraction, 3rd ed. Prentice Hall, New York, 2001.

    Google Scholar 

  26. J. Cornide, C. Garcia-Mateo, C. Capdevila, and F.G. Caballero, An Assessment of the Contributing Factors to the Nanoscale Structural Refinement of Advanced Bainitic Steels, J. Alloys. Compd., 2013, 577, p 43–47.

    Article  Google Scholar 

  27. J. Cornide, G. Miyamoto, F.G. Caballero, T. Furuhara, M.K. Miller, and C. Garcia-Mateo, Distribution of Dislocations in Nanostructured Bainite, Solid State Phenom., 2011, 172, p 117–122.

    Article  Google Scholar 

  28. F.G. Caballero, H.W. Yen, M.K. Miller, J.R. Yang, J. Cornide, and C. Garcia-Mateo, Complementary Use of Transmission Rlectron Microscopy and Atom Probe Tomography for the Examination of Plastic Accommodation in Nanocrystalline Bainitic Steels, Acta Mater., 2011, 59, p 6117–6123.

    Article  CAS  Google Scholar 

  29. B. Avishan, S. Yazdani, F.G. Caballero, T.S. Wang, and C. Garcia-Mateo, Characterisation of Microstructure and Mechanical Properties in Two Different Nanostructured Bainitic Steels, Mater. Sci. Technol., 2015, 31, p 1508–1520.

    Article  CAS  Google Scholar 

  30. H.K.D.H. Bhadeshia and A.R. Waugh, Bainite: An Atom-Probe Study of the Incomplete Reaction Phenomenon, Acta Metall., 1982, 30, p 775–784.

    Article  CAS  Google Scholar 

  31. C. Garcia-Mateo, F.G. Caballero, T. Sourmail, J. Cornide, V. Smanio, and R. Elvira, Composition Design of Nanocrystalline Bainitic Steels by Diffusionless Solid Reaction, Met. Mater. Int., 2014, 20, p 405–415.

    Article  CAS  Google Scholar 

  32. F.G. Caballero, M.K. Miller, C. Garcia-Mateo, and J. Cornide, New Experimental Evidence of the Diffusionless Transformation Nature of Bainite, J. Alloys. Compd., 2013, 577, p 626–630.

    Article  Google Scholar 

  33. S. Ahmadi Miab, B. Avishan, and S. Yazdani, Wear Resistance of Two Nanostructural Bainitic Steels With Different Amounts of Mn and Ni, Acta Metall. Sin. Engl. Lett., 2016, 29, p 587–594.

    Article  CAS  Google Scholar 

  34. A. Leiro, A. Kankanala, E. Vuorinen, and B. Prakash, Tribological Behaviour of Carbide-Free Bainitic Steel Under Dry Rolling/Sliding Conditions, Wear, 2011, 273, p 2–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Sahand University of Technology for providing the research facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Behzad Avishan or Sasan Yazdani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avishan, B., Talebi, P., Tekeli, S. et al. Producing Nanobainite on Carburized Surface of a Low-Carbon Low-Alloy Steel. J. of Materi Eng and Perform 32, 211–220 (2023). https://doi.org/10.1007/s11665-022-07096-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07096-6

Keywords

Navigation