Skip to main content

Advertisement

Log in

Effect of Silicon Dioxide-Graphene Content on the Microstructure, Sliding Wear Behavior, and Compressive Strength of Aluminum Hybrid Composites

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present work, aluminum matrix composites reinforced with graphene nanoplatelets (GNPs: 0.15-0.45wt.%) and silicon dioxide (SiO2: 1, 3, 6, 9wt.%) were produced by the powder metallurgy method. Hardness, compressive strength, density, friction coefficient, and wear rate of the prepared specimens were examined. According to the experimental results, the best compressive strength (~ 390 MPa), density (~ 2.66 g/cm3), hardness (~ 62 HV), the lowest porosity (~ 1.3%), friction coefficient (~ 0.19 for a load of 10 N), and wear rate (~ 0.003 mm3/Nm for a load of 5 N) were detected et al.-6SiO2-0.15graphene composite. Compared to pure Al, the compressive strength, hardness, and wear resistance of Al-6SiO2-0.15graphene composite were improved by ~ 110%, ~ 106%, and ~ 107, respectively. Hence, it may be concluded that SiO2 has excellent wear resistance and graphene has remarkable strength, good solid lubricating properties for Al-based composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Saboori, C. Novara, M. Pavese, C. Badini, F. Giorgis, and P. Fino, An Investigation on the Sinterability and the Compaction Behavior of Aluminum/Graphene Nanoplatelets (GNPs) Prepared by Powder Metallurgy, J. Mater. Eng. Perform., 2017, 26, p 993–999.

    Article  CAS  Google Scholar 

  2. A. Alizadeh, E. Taheri-Nassaj, and H.R. Baharvandi, Preparation and Investigation of Al-4 wt % B4C Nanocomposite Powders Using Mechanical Milling, B. Mater. Sci., 2011, 34, p 1039–1048.

    Article  CAS  Google Scholar 

  3. B. Ramesh and T. Senthilvelan, Formability Characteristics of Aluminium Based Composites-a Review, Int. J. Eng. Technol., 2010, 2, p 1–6.

    Article  Google Scholar 

  4. A. Parveen, N.R. Chauhan, and M. Suhaib, Study of Si3N4 Reinforcement on the Morphological and Tribo-mechanical Behaviour of Aluminium Matrix Composites, Mater. Res. Express., 2019, 6, p 1–6.

    Article  Google Scholar 

  5. T.S. Srivatsan, I.A. Ibrahim, F.A. Mohamed, and E.J. Lavernia, Processing Techniques for Particulate-reinforced Metal Aluminium Matrix Composites, J. Mater. Sci., 1991, 26, p 5965–5978.

    Article  CAS  Google Scholar 

  6. M. Shukla, S.K. Dhakad, P. Agarwal, and M.K. Pradhan, Characteristic Behaviour of Aluminium Metal Matrix Composites: A Review, Mater. Today-Proc., 2018, 5, p 5830–5836.

    Article  CAS  Google Scholar 

  7. H.K. Issa, A. Taherizadeh, A. Maleki, and A. Ghaei, Development of an Aluminum/Amorphous Nano-SiO2 Composite using Powder Metallurgy and Hot Extrusion Processes, Ceram. Int., 2017, 43, p 14582–14592.

    Article  CAS  Google Scholar 

  8. B. Singh, S. Chandel, and P. Singhal, Investigation of Mechanical Properties of Synthesized AA2024-T351/SiO2 Metal Matrix Nano-composite, Mater. Today-Proc., 2020, 26, p 1082–1086.

    Article  CAS  Google Scholar 

  9. A.K. Geim and K.S. Novoselov, The Rise of Graphene, Nat. Mater., 2007, 6, p 183–191.

    Article  CAS  Google Scholar 

  10. E.P. Randviir, D.A.C. Brownson, and C.E. Banks, A Decade of Graphene Research: Production, Applications and Outlook, Mater. Today-Proc., 2014, 17, p 426–432.

    Article  CAS  Google Scholar 

  11. N. Savage, Materials Science: Super Carbon, Nature, 2012, 483, p 30–31.

    Article  Google Scholar 

  12. V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, and S. Seal, Graphene Based Materials: Past, Present and Future, Prog. Mater. Sci., 2012, 56, p 1178–1271.

    Article  Google Scholar 

  13. D. Berman, A. Erdemir, and A.V. Sumant, Graphene: A new Emerging Lubricant, Mater. Today-Proc., 2014, 17, p 31–42.

    Article  CAS  Google Scholar 

  14. S. Mohan, G. Gautam, N. Kumar, R.K. Gautam, A. Mohan, and A.K. Jaiswal, Dry Sliding wear Behavior of Al-SiO2 Composites, Compos. Interface., 2016, 23, p 493–502.

    Article  CAS  Google Scholar 

  15. J. Hemanth and Abrasive, Slurry wear Behavior of Chilled Aluminum Alloy (A356) Reinforced with Fused Silica (SiO2p) Metal Matrix Composites, Compos. Part B-Eng., 2011, 42, p 1826–1833.

    Article  Google Scholar 

  16. E.Q. Mokhnache, G. Wang, and L. Geng, Wearing Resistance of in-situ Al-based Composites with Different SiO2/C/Al Molar Ratios Fabricated by Reaction Hot Pressing, Trans. Nonferrous Met. Soc. China., 2016, 26, p 917–923.

    Article  CAS  Google Scholar 

  17. H. Tan, Q. Sun, W. Chen, S. Zhu, J. Cheng, and J. Yang, Tribological Performance and wear Mechanisms of a High Temperature Wear-resistant Al-Si/SiAlON Composite, Tribol. Int., 2021, 164, p 1–9.

    Article  Google Scholar 

  18. P. Thasleem, D. Kumar, M.L. Joy, and B. Kuriachen, Effect of Heat Treatment and Electric Dischage Alloying on the Lubricated Tribology of Al-Si Alloy Fabricated by Selective Laser Melting, Wear, 2022, 494–495, p 1–24.

    Article  Google Scholar 

  19. J. Ma, C. Fan, W. Chen, H. Tan, S. Zhu, and Q. Li, Core-shell Structure in situ Reinforced Aluminum Matrix Composites: Microstructure, Mechanical and Tribological Properties, J. Alloys Compd., 2022, 901, p 1–14.

    Article  Google Scholar 

  20. M. Gürbüz, M.C. Şenel, and E. Koç, The Effect of Sintering Temperature, Time and Graphene Addition on the Mechanical Properties and Microstructure of Aluminum Composites, J. Compos. Mater., 2018, 52, p 553–563.

    Article  Google Scholar 

  21. M.C. Şenel, M. Gürbüz, and E. Koç, The Fabrication and Characterization of Aluminum Hybrid Composites Reinforced with Si3N4/GNPs Binary Particles, J. Compos. Mater., 2019, 53, p 4043–4054.

    Article  Google Scholar 

  22. H.G.P. Kumar and M.A. Xavior, Fatigue and wear Behavior of Al6061-Graphene Composites Synthesized by Powder Metallurgy, T. Indian. I. Metals., 2016, 69, p 415–419.

    Article  CAS  Google Scholar 

  23. S.E. Shin, Y.J. Ko, and D.H. Bae, Mechanical and Thermal Properties of Nanocarbon-reinforced Aluminum Matrix Composites at Elevated Temperatures, Compos. Part B-Eng., 2016, 106, p 66–73.

    Article  CAS  Google Scholar 

  24. M.C. Şenel, M. Gürbüz, and E. Koç, Mechanical and Tribological Behaviours of Aluminium Matrix Composites Reinforced by Graphene Nanoplatelets, Mat. Sci. Tech. Ser., 2018, 34, p 1980–19890.

    Article  Google Scholar 

  25. G. Iacob, V.G. Ghica, M. Buzatu, T. Buzatu, and M.I. Petrescu, Studies on wear Rate and Micro-hardness of the Al/Al2O3/Gr Hybrid Composites Produced Via Powder Metallurgy, Compos. Part B-Eng., 2015, 69, p 603–611.

    Article  CAS  Google Scholar 

  26. J. Wang, Z. Li, G. Fan, H. Pan, Z. Chen, and S. Zhang, Reinforcement with Graphene Nanosheets in Aluminium Matrix Composites, Scripta. Mater., 2012, 66, p 594–597.

    Article  CAS  Google Scholar 

  27. S.J. Yan, S.L. Dai, X.Y. Zhang, C. Yang, Q.H. Hong, J.Z. Chen, and Z.M. Lin, Investigating Aluminum Alloy Reinforced by Graphene Nanoflakes, Mater. Sci. Eng. A-Struct., 2014, 612, p 440–444.

    Article  CAS  Google Scholar 

  28. W.S. AbuShanab, E.B. Moustafa, E. Ghandourah, and M.A. Taha, Effect of Graphene Nanoparticles on the Physical and Mechanical Properties of the Al2024-graphene Nanocomposites Fabricated by Powder Metallurgy, Results. Phys., 2020, 19, p 1–12.

    Article  Google Scholar 

  29. L. Chen, Y. Qi, Y. Fei, Y. Liu, and Z. Du, GNP-reinforced Al2024 Composite Fabricated through Powder Semi-solid Processing, Mater. Trans., 2020, 61, p 1239–1246.

    Article  CAS  Google Scholar 

  30. H.G.P. Kumar and M.A. Xavior, Assessment of Mechanical and Tribological Properties of Al2024-SiC-graphene Hybrid Composites, Procedia. Eng., 2017, 174, p 992–999.

    Article  CAS  Google Scholar 

  31. M.C. Şenel and M. Gürbüz, Investigation on Mechanical Properties and Microstructure of B4C/Graphene Binary Particles Reinforced Aluminum Hybrid Composites, Met. Mater. Int., 2021, 27, p 2438–2449.

    Article  Google Scholar 

  32. W. Zhai, X. Shi, J. Yao, A.M.M. Ibrahim, Z. Xu, Q. Zhu, Y. Xiao, L. Chen, and Q. Zhang, Investigation of Mechanical and Tribological Behaviors of Multilayer Graphene Reinforced Ni3Al Matrix Composites, Compos. Part B-Eng., 2015, 70, p 149–155.

    Article  CAS  Google Scholar 

  33. M.C. Şenel and M. Gürbüz, Investigation on Mechanical Properties and Microstructures of Aluminum Hybrid Composites Reinforced with Al2O3/GNPs Binary Particles, Arch. Metall. Mater., 2021, 66, p 97–106.

    Google Scholar 

  34. B. Hariyanto, D.A.P. Wardani, N. Kurniawati, and N.P. Har, X-Ray peak Profile Analysis of Silica by Williamson-hall and Size-strain Plot Methods, J. Phys. Conf. Ser., 2019, 1, p 1–5.

    Google Scholar 

  35. J.W. Kaczmar, K. Pietrzak, and W. Wlosinski, The Production and Application of Metal Matrix Composite Materials, J. Mater. Process. Tech., 2000, 106, p 58–67.

    Article  Google Scholar 

  36. Z. Hu, G. Tong, Q. Nian, R. Xu, M. Saei, F. Chen, C. Chen, M. Zhang, H. Guo, and J. Xu, Laser Sintered Single Layer Graphene Oxide Reinforced Titanium Matrix Nanocomposites, Compos. Part B-Eng., 2016, 93, p 352–359.

    Article  CAS  Google Scholar 

  37. Z. Cao, X. Wang, J. Li, Y. Wu, H. Zhang, J. Guo, and S. Wang, Reinforcement with Graphene Nanoflakes in Titanium Matrix Composites, J. Alloy. Compd., 2017, 696, p 498–502.

    Article  CAS  Google Scholar 

  38. J.M. Torralba, C.E. Costa, and F. Velasco, P/M Aluminum Matrix Composites: An Overview, J. Mater. Process. Tech., 2003, 133, p 203–206.

    Article  CAS  Google Scholar 

  39. R. Liu and D.Y. Li, Modification of Archard’s Equation by Taking Account of Elastic/ Pseudoelastic Properties of Materials, Wear, 2001, 251, p 956–964.

    Article  Google Scholar 

  40. V.R. Rajeev, D.K. Dwivedi, and S.C. Jain, Dry Reciprocating wear of Al-Si-SiCp Composites: A Statistical Analysis, Tribol. Int., 2010, 43, p 1532–1541.

    Article  CAS  Google Scholar 

  41. Y. Liu, Z. Han, and H. Cong, Effects of Sliding Velocity and Normal Load on the Tribological Behavior of a Nnanocrystalline Al Based Composite, Wear, 2010, 268, p 976–983.

    Article  CAS  Google Scholar 

  42. N.M. Kumar, S.S. Kumaran, and L.A. Kumaraswamidhas, Wear Behaviour of Al 2618 Aalloy Reinforced with Si3N4, AlN and ZrB2 in situ Composites at Elevated Temperatures, Alex. Eng. J., 2016, 55, p 19–36.

    Article  Google Scholar 

Download references

Acknowledgements

The authors of this study thank Black Sea Advanced Technology Research and Application Center (KITAM) in Ondokuz Mayıs University (OMU) for SEM and XRD analysis. They also thank Assoc. Prof. Dr. Mevlüt Gürbüz for useful suggestions related to induction heat treatment and microstructure analyses. This work was supported by the [Scientific Researched Project Department of Ondokuz Mayıs University] under [grant number PYO.MUH.1901.20.001].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmut Can ŞENEL.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ŞENEL, M.C., ÜSTÜN, M. Effect of Silicon Dioxide-Graphene Content on the Microstructure, Sliding Wear Behavior, and Compressive Strength of Aluminum Hybrid Composites. J. of Materi Eng and Perform 32, 1248–1260 (2023). https://doi.org/10.1007/s11665-022-07194-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07194-5

Keywords

Navigation