Skip to main content

Advertisement

Log in

Dry Sliding Wear and Friction Behavior of Graphene/ZrO2 Binary Nanoparticles Reinforced Aluminum Hybrid Composites

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Recently, aluminum matrix composites have been fabricated by pure zirconia (ZrO2) or pure graphene in the aluminum matrix because of good solid lubricant property of graphene and high compressive strength of ZrO2. Nevertheless, there is no study on the effect of both ZrO2 and graphene reinforced aluminum composite. In this current work, the tribological behaviors of Al-ZrO2 and Al-ZrO2-graphene composites with various contents (ZrO2: 1–12wt.%; graphene: 0.15–0.45wt.%) were investigated under different loads (5 and 10 N) via the pin-on-disk wear test unit. The density, porosity, hardness, and compressive strength were investigated by the Archimedes’ principle kit, Vickers hardness test unit, and universal test machine, respectively. According to the test results, the micro-Vickers hardness, porosity, and compressive strength enhanced from 30 ± 1.2 HV, 7%, 186 ± 4 MPa (pure Al) to 75 ± 2 HV, 3.7%, 490 ± 4 MPa (Al-9%ZrO2-0.15%graphene), respectively. Similarly, the lowest friction coefficient (0.18 under a 10 N load), the mass loss (0.011 g under a 5 N load), and wear rate (0.0031 mm3/(Nm) under a 5 N load) were obtained at the Al-9%ZrO2-0.15%graphene composite. The mechanical strength and tribological behaviors of Al hybrid composites deteriorated in the case of over 9wt.%ZrO2 and 0.15wt.%graphene contents due to the agglomerations of graphene and ZrO2 nanoparticles. Therefore, it may be concluded that graphene is an excellent solid lubricator, and ZrO2 has a remarkable wear resistance for Al hybrid composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Dieter, G.E.: Mechanical Metallurgy. McGraw-Hill, London (1961)

    Book  Google Scholar 

  2. Song, W.; Veca, L.M.; Anderson, A.; Cao, M.; Cao, L.; Sun, Y.: Light-weight nanocomposite materials with enhanced thermal transport properties. Nanotechnol. Rev. 1(4), 363–376 (2012). https://doi.org/10.1515/ntrev-2012-0023

    Article  Google Scholar 

  3. Khan, A.; Matli, P.R.; Nawaz, M.; Mattli, M.R.: Microstructure and mechanical behavior of hot extruded aluminum/tin-bismuth composites produced by powder metallurgy. Appl. Sci. 10(8), 1–14 (2020). https://doi.org/10.3390/app10082812

    Article  Google Scholar 

  4. Reddy, M.; Khan, A.; Reddy, P.; Yusuf, M.; Ashraf, A.A.; Shakoor, R.A.: Gupta, M: Effect of Inconel625 particles on the microstructural, mechanical, and thermal properties of Al-Inconel625 composites. Mater. Today Commun. 25, 1–12 (2020). https://doi.org/10.1016/j.mtcomm.2020.101564

    Article  Google Scholar 

  5. Sharma, P.; Sharma, S.; Kandhuja, D.: Production and some properties of Si3N4 reinforced aluminium alloy. J. Asian. Ceram. Soc. 3(3), 352–359 (2015). https://doi.org/10.1016/j.jascer.2015.07.002

    Article  Google Scholar 

  6. Şenel, M.C.; Gürbüz, M.; Koç, E.: The fabrication and characterization of synergistic Al-SiC-GNPs hybrid composites. Compos. Part B Eng. 154, 1–9 (2018). https://doi.org/10.1016/j.compositesb.2018.07.035

    Article  Google Scholar 

  7. Khademian, M.; Alizadeh, A.; Abdollahi, A.: Fabrication and characterization of hot rolled and hot extruded boron carbide (B4C) reinforced A356 aluminum alloy matrix composites produced by stir casting method. T. Indian I. Metals 70(6), 1635–1646 (2017). https://doi.org/10.1007/s12666-016-0962-0

    Article  Google Scholar 

  8. Gostariani, R.; Ebrahimi, R.; Asadabad, M.A.; Paydar, M.H.: Mechanical properties of Al/BN nanocomposites fabricated by planetary ball milling and conventional hot extrusion. Acta Metall. Sin. 31, 245–253 (2018). https://doi.org/10.1007/s40195-017-0640-1

    Article  Google Scholar 

  9. Şenel, M.C.; Gürbüz, M.: Investigation on mechanical properties and microstructures of aluminum hybrid composites reinforced with Al2O3/GNPs binary particles. Arch. Metall. Mater. 66(1), 97–106 (2021). https://doi.org/10.24425/amm.2021.134764

    Article  Google Scholar 

  10. Samal, P.; Vundavilli, P.R.; Meher, A.; Mahapatra, M.M.: Fabrication and mechanical properties of titanium carbide reinforced aluminium composites. Mater. Today. Proc. 18(7), 2649–2655 (2019). https://doi.org/10.1016/j.matpr.2019.07.125

    Article  Google Scholar 

  11. Suresh, S.; Shenbag, N.; Moorhi, V.: Aluminium-titanium diboride (Al-TiB2) metal matrix composites: challenges and opportunities. Procedia Eng. 38, 89–97 (2012). https://doi.org/10.1016/j.proeng.2012.06.013

    Article  Google Scholar 

  12. Khan, A.; Abdelrazeq, M.W.; Mattli, M.R.; Yusuf, M.M.; Alashraf, A.; Matli, P.R.; Shakoor, R.A.: Structural and mechanical properties of Al-SiC-ZrO2 nanocomposites fabricated by microwave sintering technique. Curr. Comput. Aid. Drug Des. 10(10), 1–12 (2020). https://doi.org/10.3390/cryst10100904

    Article  Google Scholar 

  13. Ravichandran, M.; Naveen Sait, A.; Anandakrishnan, V.: Al–TiO2–Gr powder metallurgy hybrid composites with cold upset forging. Rare Met. 33(6), 686–696 (2014). https://doi.org/10.1007/s12598-014-0239-x

    Article  Google Scholar 

  14. Elango, G.; Raghunath, B.K.: Tribological behavior of hybrid (LM25Al + SiC+ TiO2) metal matrix composites. Procedia Eng. 64, 671–680 (2013). https://doi.org/10.1016/j.proeng.2013.09.142

    Article  Google Scholar 

  15. El Mahallawi, I.; Shash, Y.; Rashad, R.M.; Abdelaziz, M.H.; Mayer, J.; Schwedt, A.: Hardness and wear behaviour of semi-solid cast A390 alloy reinforced with Al2O3 and TiO2 nanoparticles. Arab. J. Sci. Eng. 39, 5171–5184 (2014). https://doi.org/10.1007/s13369-014-1179-3

    Article  Google Scholar 

  16. Mohapatra, S.; Mishra, D.K.; Mishra, G.; Roy, G.S.; Behera, D.; Mantry, S.; Singh, S.K.: A study on sintered TiO2 and TiO2/SiC composites synthesized through chemical reaction based solution method. J. Compos. Mater. 47(24), 3081–3089 (2013). https://doi.org/10.1177/0021998312462430

    Article  Google Scholar 

  17. Muley, A.V.; Aravindan, S.; Singh, I.P.: Nano and hybrid aluminum based metal matrix composites: an overview. Manuf. Rev. 2(15), 1–13 (2015). https://doi.org/10.1051/mfreview/2015018

    Article  Google Scholar 

  18. Bodunrin, M.O.; Alaneme, K.K.; Chown, L.H.: Aluminium matrix hybrid composites: A review of reinforcement philosophies; mechanical, corrosion and tribological characteristics. J. Mater. Res. Technol. 4(4), 434–445 (2015). https://doi.org/10.1016/j.jmrt.2015.05.003

    Article  Google Scholar 

  19. Madhukar, P.; Selvaraj, N.; Rao, C.S.P.: Manufacturing of aluminium nano hybrid composites: a state of review. IOP Conf. Ser. Mater. Sci. Eng. 149(012114), 1–12 (2016). https://doi.org/10.1088/1757-899X/149/1/012114

    Article  Google Scholar 

  20. Iacob, G.; Ghica, V.G.; Buzatu, M.; Buzatu, T.; Petrescu, M.I.: Studies on wear rate and micro-hardness of the Al/Al2O3/Gr hybrid composites produced via powder metallurgy. Compos. Part B Eng. 69, 603–611 (2015). https://doi.org/10.1016/j.compositesb.2014.07.008

    Article  Google Scholar 

  21. Alizadeh, A.; Abdollahi, A.; Biukani, H.: Creep behavior and wear resistance of Al 5083 based hybrid composites reinforced with carbon nanotubes (CNTs) and boron carbide (B4C). J. Alloys. Compd. 650, 783–793 (2015). https://doi.org/10.1016/j.jallcom.2015.07.214

    Article  Google Scholar 

  22. Zhang, X.N.; Geng, L.; Wang, G.S.: Fabrication of Al-based hybrid composites reinforced with SiC whiskers and SiC nanoparticles by squeeze casting. J. Mater. Process. Technol. 176(1–3), 146–151 (2006). https://doi.org/10.1016/j.jmatprotec.2006.03.125

    Article  Google Scholar 

  23. Geim, A.K.; Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007). https://doi.org/10.1038/nmat1849

    Article  Google Scholar 

  24. Savage, N.: Materials science: super carbon. Nature 483, 30–31 (2012). https://doi.org/10.1038/483S30a

    Article  Google Scholar 

  25. Singh, V.; Joung, D.; Zhai, L.; Das, S.; Khondaker, S.I.; Seal, S.: Graphene based materials: past, present and future. Prog. Mater. Sci. 56(8), 1178–1271 (2012). https://doi.org/10.1016/j.pmatsci.2011.03.003

    Article  Google Scholar 

  26. Berman, D.; Erdemir, A.; Sumant, A.V.: Graphene: a new emerging lubricant. Mater. Today 17(1), 31–42 (2014). https://doi.org/10.1016/j.mattod.2013.12.003

    Article  Google Scholar 

  27. Udayashankar, S.; Ramamurthy, V.S.: Development and characterization of Al6061-zirconium dioxide reinforced particulate composites. Int. J. Eng. Technol. 7(3.12), 128–132 (2018). https://doi.org/10.14419/ijet.v7i3.12.15901

    Article  Google Scholar 

  28. Kumar, H.G.P.; Xavior, M.A.: Effect of graphene addition on flexural properties of Al6061 nano composites. Mater. Today. Proc. 4(8), 8127–8133 (2017). https://doi.org/10.1016/j.matpr.2017.07.153

    Article  Google Scholar 

  29. Boppana, S.B.; Dayanand, S.; Kumar, A.; Kumar, V.; Aravinda, T.: Synthesis and characterization of nano graphene and ZrO2 reinforced Al 6061 metal matrix composites. J. Mater. Res. Tech. 9(4), 7354–7362 (2020). https://doi.org/10.1016/j.jmrt.2020.05.013

    Article  Google Scholar 

  30. Chen, L.; Qi, Y.; Fei, Y.; Du, Z.: Enhanced mechanical properties and thermal conductivity for GNPs/Al2024 composites with in situ SiC nanorods. Met. Mater. Int. (2021). https://doi.org/10.1007/s12540-020-00803-9

    Article  Google Scholar 

  31. AbuShanab, W.S.; Moustafa, E.B.; Ghandourah, E.; Taha, M.A.: Effect of graphene nanoparticles on the physical and mechanical properties of the Al2024-graphene nanocomposites fabricated by powder metallurgy. Results Phys. 19, 1–12 (2020). https://doi.org/10.1016/j.rinp.2020.103343

    Article  Google Scholar 

  32. Shin, S.E.; Ko, Y.J.; Bae, D.H.: Mechanical and thermal properties of nanocarbon-reinforced aluminum matrix composites at elevated temperatures. Compos. Part B Eng. 106, 66–73 (2016). https://doi.org/10.1016/j.compositesb.2016.09.017

    Article  Google Scholar 

  33. Zheng, Z.; Yang, X.; Li, J.C.; Zhang, X.X.; Muhammad, I.; Geng, L.: Preparation and properties of graphene nanoplatelets reinforced aluminum composites. Trans. Nonferrous Met. Soc. China 31(4), 878–886 (2021). https://doi.org/10.1016/S1003-6326(21)65546-2

    Article  Google Scholar 

  34. Chak, V.; Chattopadhyay, H.: Fabrication and heat treatment of graphene nanoplatelets reinforced aluminium nanocomposites. Mat. Sci. Eng. A Struct. 791, 1–10 (2021). https://doi.org/10.1016/j.msea.2020.139657

    Article  Google Scholar 

  35. Yu, H.; Zhang, S.Q.; Xia, J.H.; Su, Q.; Ma, B.C.; Wu, J.H.; Zhou, J.X.; Wang, X.T.; Hu, L.X.: Microstructural evolution, mechanical and physical properties of graphene reinforced aluminum composites fabricated via powder metallurgy. Mat. Sci. Eng. A Struct. 802, 1–10 (2021). https://doi.org/10.1016/j.msea.2020.140669

    Article  Google Scholar 

  36. Kumar, H.G.P.; Xavior, M.A.: Assessment of mechanical and tribological properties of Al 2024-SiC-Graphene hybrid composites. Procedia Eng. 174, 992–999 (2017). https://doi.org/10.1016/j.proeng.2017.01.251

    Article  Google Scholar 

  37. Şenel, M.C.; Gürbüz, M.; Koç, E.: Mechanical and tribological behaviours of aluminium matrix composites reinforced by graphene nanoplatelets. Mater. Sci. Tech. Lond. 34(16), 1980–1989 (2018). https://doi.org/10.1080/02670836.2018.1501839

    Article  Google Scholar 

  38. Gürbüz, M.; Şenel, M.C.: Koç, E: The effect of sintering temperature, time and graphene addition on the mechanical properties and microstructure of aluminum composites. J. Compos. Mater. 52(4), 553–563 (2018). https://doi.org/10.1177/0021998317740200

    Article  Google Scholar 

  39. Şenel, M.C.; Gürbüz, M.; Koç, E.: The fabrication and characterization of aluminum hybrid composites reinforced with silicon nitride/graphene nanoplatelet binary particles. J. Compos. Mater. 53, 4043–4054 (2019). https://doi.org/10.1177/0021998319853329

    Article  Google Scholar 

  40. Pandiyarajan, R.; Maran, P.; Marimuthu, S.; Ganesh, K.C.: Mechanical and tribological behavior of the metal matrix composite AA6061/ZrO2/C. J. Mech. Sci. Technol. 31(10), 4711–4717 (2017). https://doi.org/10.1007/s12206-017-0917-3

    Article  Google Scholar 

  41. Kumar, G.B.V.; Pramod, R.; Sekhar, C.G.; Kumar, G.P.; Bhanumurthy, T.: Investigation of physical, mechanical and tribological properties of Al6061-ZrO2 nano-composites. Heliyon 5(11), 1–8 (2019). https://doi.org/10.1016/j.heliyon.2019.e02858

    Article  Google Scholar 

  42. Abdizadeh, H.; Baghchesara, M.A.: Investigation on mechanical properties and fracture behavior of A356 aluminum alloy based ZrO2 particle reinforced metal-matrix composites. Ceram. Int. 39(2), 2045–2050 (2013). https://doi.org/10.1016/j.ceramint.2012.08.057

    Article  Google Scholar 

  43. Salimi, A.; Borhani, E.; Emadoddin, E.: Evaluation of mechanical properties and structure of 1100-Al reinforced with ZrO2 nano-particles via accumulatively roll-bonded. Proc. Mat. Sci. 11, 67–73 (2015). https://doi.org/10.1016/j.mspro.2015.11.094

    Article  Google Scholar 

  44. Hemanth, J.: Development and property evaluation of aluminum alloy reinforced with nano-ZrO2 metal matrix composites (NMMCs). Mater. Sci. Eng. A Struct. 507(1–2), 110–113 (2009). https://doi.org/10.1016/j.msea.2008.11.039

    Article  Google Scholar 

  45. Madhusudhan, M.; Naveen, G.J.; Mahesha, K.: Mechanical characterization of AA7068-ZrO2 reinforced metal matrix composites. Mater. Today Proc. 4(2), 3122–3130 (2017). https://doi.org/10.1016/j.matpr.2017.02.196

    Article  Google Scholar 

  46. Ramachandra, M.; Abhishek, A.; Siddeshwar, P.; Bharathi, V.: Hardness and wear resistance of ZrO2 nano particle reinforced Al nanocomposites produced by powder metallurgy. Proc. Mater. Sci. 10, 212–219 (2015). https://doi.org/10.1016/j.mspro.2015.06.043

    Article  Google Scholar 

  47. Zhai, W.; Shi, X.; Yao, J.; Ibrahim, A.M.M.; Xiu, Z.; Zhu, Q.; Xiao, Y.; Chen, L.; Zhang, Q.: Investigation of mechanical and tribological behaviors of multilayer graphene reinforced Ni3Al matrix composites. Compos. Part B Eng. 70, 149–155 (2015). https://doi.org/10.1016/j.compositesb.2014.10.052

    Article  Google Scholar 

  48. Liu, R.; Li, D.Y.: Modification of Archard’s equation by taking account of elastic/ pseudoelastic properties of materials. Wear 251(1–12), 956–964 (2001). https://doi.org/10.1016/S0043-1648(01)00711-6

    Article  Google Scholar 

  49. Kaczmar, J.W.; Pietrzak, K.; Wlosinski, W.: The production and application of metal matrix composite materials. J. Mater. Process. Tech. 106(1–3), 58–67 (2000). https://doi.org/10.1016/S0924-0136(00)00639-7

    Article  Google Scholar 

  50. Li, G.; Xiong, B.: Effects of graphene content on microstructures and tensile property of graphene-nanosheets/aluminum composites. J. Alloy. Compd. 697, 31–36 (2017). https://doi.org/10.1016/j.jallcom.2016.12.147

    Article  Google Scholar 

  51. Habibi, M.K.; Joshi, S.P.; Gupta, M.: Hierarchical magnesium nano-composites for enhanced mechanical response. Acta Mater. 58(18), 6104–6114 (2010). https://doi.org/10.1016/j.actamat.2010.07.028

    Article  Google Scholar 

  52. Hu, Z.; Tong, G.; Nian, Q.; Xu, R.; Saei, M.; Chen, F.; Chen, C.; Zhang, M.; Guo, H.; Xu, J.: Laser sintered single layer graphene oxide reinforced titanium matrix nanocomposites. Compos. Part B Eng. 93, 352–359 (2016). https://doi.org/10.1016/j.compositesb.2016.03.043

    Article  Google Scholar 

  53. Cao, Z.; Wang, X.; Li, J.; Wu, Y.; Zhang, H.; Guo, J.; Wang, S.: Reinforcement with graphene nanoflakes in titanium matrix composites. J. Alloy. Compd. 696, 498–502 (2017). https://doi.org/10.1016/j.jallcom.2016.11.302

    Article  Google Scholar 

  54. Torralba, J.M.; Costa, C.E.; Velasco, F.: P/M aluminum matrix composites: an overview. J. Mater. Process. Tech. 133(1–2), 203–206 (2003). https://doi.org/10.1016/S0924-0136(02)00234-0

    Article  Google Scholar 

  55. Chen, L.Y.; Konishi, H.; Fehrenbacher, A.; Ma, C.; Xu, J.Q.; Choi, H.; Xu, H.F.; Pfefferkorn, F.E.; Li, X.C.: Novel nanoprocessing route for bulk graphene nanoplatelets reinforced metal matrix nanocomposites. Scripta Mater. 67(1), 29–32 (2012). https://doi.org/10.1016/j.scriptamat.2012.03.013

    Article  Google Scholar 

  56. Wang, J.; Li, Z.; Fan, G.; Pan, H.; Chen, Z.; Zhang, D.: Reinforcement with graphene nanosheets in aluminum matrix composites. Scripta Mater. 66, 594–597 (2012). https://doi.org/10.1016/j.scriptamat.2012.01.012

    Article  Google Scholar 

  57. Wang, Z.; Georgarakis, K.; Zhang, W.W.; Prashanth, K.G.; Eckert, J.; Scudino, S.: Reciprocating sliding wear behavior of high-strength nanocrystalline Al84Ni7Gd6Co3 alloys. Wear 382–383, 78–84 (2017). https://doi.org/10.1016/j.wear.2017.04.013

    Article  Google Scholar 

  58. Rajeev, V.R.; Dwivedi, D.K.; Jain, S.C.: Dry reciprocating wear of Al–Si–SiCp composites: a statistical analysis. Tribol. Int. 43(8), 1532–1541 (2010). https://doi.org/10.1016/j.triboint.2010.02.014

    Article  Google Scholar 

  59. Liu, Y.; Han, Z.; Cong, H.: Effects of sliding velocity and normal load on the tribological behavior of a nanocrystalline Al based composite. Wear 268(7–8), 976–983 (2010). https://doi.org/10.1016/j.wear.2009.12.027

    Article  Google Scholar 

  60. Kumar, N.M.; Kumaran, S.S.; Kumaraswamidhas, L.A.: Wear behaviour of Al 2618 alloy reinforced with Si3N4, AlN and ZrB2 in situ composites at elevated temperatures. Alex. Eng. J. 55(1), 19–36 (2016). https://doi.org/10.1016/j.aej.2016.01.017

    Article  Google Scholar 

  61. Kumar, H.G.P.; Xavior, M.A.: Fatigue and wear behavior of Al6061–graphene composites synthesized by powder metallurgy. T. Indian I. Metals 69(2), 415–419 (2016). https://doi.org/10.1007/s12666-015-0780-9

    Article  Google Scholar 

Download references

Acknowledgements

The authors of this study thank Black Sea Advanced Technology Research and Application Center (KITAM) in Ondokuz Mayıs University (OMU) for SEM and XRD analysis. They also thank Assoc. Prof. Dr. Mevlüt Gürbüz for useful suggestions related to induction heat treatment and microstructure analyses. This work was supported by the [Scientific Researched Project Department of Ondokuz Mayıs University] under [Grant number PYO.MUH.1901.20.001].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmut Can Şenel.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şenel, M.C., Üstün, M. Dry Sliding Wear and Friction Behavior of Graphene/ZrO2 Binary Nanoparticles Reinforced Aluminum Hybrid Composites. Arab J Sci Eng 47, 9253–9269 (2022). https://doi.org/10.1007/s13369-022-06661-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06661-4

Keywords

Navigation