Skip to main content
Log in

Investigation on Mechanical Properties and Microstructure of B4C/Graphene Binary Particles Reinforced Aluminum Hybrid Composites

  • Published:
Metals and Materials International Aims and scope Submit manuscript

This article has been updated

Abstract

In the present study, boron carbide and graphene-reinforced aluminum hybrid composites with various boron carbide (1, 3, 6, 9, 12, 15, 30 wt%) and graphene nanoplatelets (GNPs) content (0.15, 0.30, 0.45 wt%) were produced by the powder metallurgy method. The method consists of mixing, ultrasonic dispersing, mixing, filtering, drying, pressing, and sintering processes. The apparent density, compressive strength, and Vickers hardness of the fabricated composites were determined by density meter, universal test machine, and micro Vickers hardness measurement device, respectively. The phase and microstructural analysis of the fabricated composites were analyzed using an X-ray diffraction device and scanning electron microscope, respectively. The maximum apparent density (2.54 ± 0.005 g/cm3), the highest Vickers hardness (109.8 ± 1.5 HV), the best compressive strength (244 ± 5 MPa), and minimum porosity (4.0%) were obtained at Al-30%B4C-0.15%GNPs composite. The enhancement in Vickers hardness and compressive strength of Al-30%B4C-0.15%GNPs composite was detected as + 293% and + 190% compared with pure aluminum. In conclusion, it was detected that the mechanical strength of Al-30B4C-GNPs composites improved up to 0.15 wt%GNPs content. After 0.15 wt%graphene content, the mechanical strength of Al-30B4C-GNPs composites decreased due to the agglomerated graphene nanoparticles.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Change history

  • 17 June 2021

    The Graphic Abstract has been included

References

  1. G.S. Hanumanth, G.A. Irons, J. Mater. Sci. 28, 2459 (1993)

    CAS  Google Scholar 

  2. Y. Sahin, S. Murphy, J. Mater. Sci. 34, 5399 (1996)

    Google Scholar 

  3. M. Kok, J. Mater. Process. 161, 381 (2005)

    CAS  Google Scholar 

  4. K.K. Chawla, Composite Materials, 1st edn. (Springer, New York, 2006), pp. 92–100

    Google Scholar 

  5. D.K. Koli, G. Agnihotri, R. Purohit, Mater. Today Proc. 2, 3032 (2015)

    Google Scholar 

  6. A. Macke, B.F. Schultz, P. Rohatgi Adv. Mater. Proc. 170, 19 (2012)

    CAS  Google Scholar 

  7. J.K. Chen, I.S. Huang, Compos. Part B Eng. 44, 698 (2013)

    CAS  Google Scholar 

  8. T.M. Lillo, Mater. Sci. Eng. A Struct. 410–411, 443 (2005)

    Google Scholar 

  9. A. Alizadeh, E. Taheri-Nassaj, H.R. Baharvandi, B. Mater, Science 34, 1039 (2011)

    CAS  Google Scholar 

  10. H.M. Hu, E.J. Lavernia, W.C. Harrigan, J. Kajuch, S.R. Nutt, Mater. Sci. Eng. A Struct. 297, 94 (2001)

    Google Scholar 

  11. V.M. Ravindranath, G.S. Shiva Shankar, S. Basavarajappa, N.G. Siddesh Kumar, Mater. Today Proc. 4, 11163 (2017)

  12. J. Wang, Z. Li, G. Fan, H. Pan, Z. Chen, D. Zhang, Scripta Mater. 66, 594 (2012)

    CAS  Google Scholar 

  13. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    CAS  Google Scholar 

  14. E.P. Randviir, D.A.C. Brownson, C.E. Banks, Mater. Today 17, 426 (2014)

    CAS  Google Scholar 

  15. N. Savage, Nature 482, 30 (2012)

    Google Scholar 

  16. V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, S. Seal, Prog. Mater Sci. 56, 1178 (2012)

    Google Scholar 

  17. B. Peng, M. Locascio, P. Zapol, S. Li, S.L. Mielke, G.C. Schatz, H.D. Espinosa, Nat. Nanotechnol. 3, 626 (2008)

    CAS  Google Scholar 

  18. C. Balázsi, B. Fényi, N. Hegman, F. Wéber, Z. Kónya, I. Kiricsi, L.P. Biró, P. Aratóa, Compos. Part B-Eng. 37, 418 (2006)

    Google Scholar 

  19. M.M.H. Bastwros, A.M.K. Esawi, A. Wifi, Wear 307, 164 (2013)

    CAS  Google Scholar 

  20. A. Baradeswaran, A.E. Perumal, Compos. Part B-Eng. 56, 472 (2014)

    CAS  Google Scholar 

  21. D. Berman, A. Erdemir, A.V. Sumant, Mater. Today 17, 31 (2014)

    CAS  Google Scholar 

  22. Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Adv. Mater. 22, 3906 (2010)

    CAS  Google Scholar 

  23. X. Pang, Y. Xian, W. Wang, P. Zhang, J. Alloys Compds. 768, 476 (2018)

    CAS  Google Scholar 

  24. M. Khademian, A. Alizadeh, A. Abdollahi, Trans. Indian I. Metals. 70(6), 1635 (2017)

    CAS  Google Scholar 

  25. M. Ipekoglu, A. Nekouyan, O. Albayrak, S. Altintas, J. Mater. Res. 32, 599 (2017)

    CAS  Google Scholar 

  26. S. Dhandapani, T. Rajmohan, K. Palanikumar, M. Charan, Particul. Sci. Technol. 34, 255 (2016)

    CAS  Google Scholar 

  27. S. Das, M. Chandrasekaran, S. Samanta, Mater. Today Proc. 5, 18110 (2018)

    CAS  Google Scholar 

  28. B. Ravi, B.B. Naik, J.U. Prakash, Mater. Today Proc. 2, 2984 (2018)

    Google Scholar 

  29. G.S. Saini, S. Goyal, J. Mater. Sci. Eng. 16, 26 (2017)

    Google Scholar 

  30. S.J. Yan, S.L. Dai, X.Y. Zhang, C. Yang, Q.H. Hong, J.Z. Chen, Z.M. Lin, Mat. Sci. Eng. A-Struct. 612, 440 (2014)

    CAS  Google Scholar 

  31. J.L. Li, Y.C. Xiong, X.D. Wang, S.J. Yan, C. Yang, W.W. He, J.Z. Chen, S.Q. Wang, X.Y. Zhang, S.L. Dai, Mat. Sci. Eng. A-Struct. 626, 400 (2015)

    CAS  Google Scholar 

  32. M. Bastwros, G.Y. Kim, C. Zhu, K. Zhang, S. Wang, X. Tang, X. Wang, Compos. Part B Eng. 60, 111 (2014)

    CAS  Google Scholar 

  33. S.F. Bartolucci, J. Paras, M.A. Rafiee, J. Rafiee, S. Lee, D. Kapoor, N. Koratkar, Mat. Sci. Eng. A Struct. 528, 7933 (2011)

    CAS  Google Scholar 

  34. M. Rashad, F. Pan, A. Tang, M. Asif, Prog. Nat. Sci. Mater. 24, 101 (2014)

    CAS  Google Scholar 

  35. M. Rashad, F. Pan, Z. Yu, M. Asif, H. Lin, R. Pan, Prog. Mater Sci. 25, 460 (2015)

    CAS  Google Scholar 

  36. G. Li, B. Xiong, J. Alloy. Compd. 697, 31 (2017)

    CAS  Google Scholar 

  37. M. Gürbüz, M.C. Şenel, E. Koç, J. Compos. Mater. 52, 553 (2018)

    Google Scholar 

  38. M.C. Şenel, M. Gürbüz, E. Koç, Compos. Part B Eng. 154, 1 (2018)

    Google Scholar 

  39. M.C. Şenel, M. Gürbüz, E. Koç, J. Compos. Mater. 53, 4043 (2018)

    Google Scholar 

  40. T. Varol, A. Canakci, A Met. Mater. Int. 21, 4 (2015)

    Google Scholar 

  41. M. Rahimian, N. Ehsani, N. Parvin, H.R. Baharvandi, J. Mater. Process. Technol. 209, 14 (2009)

    Google Scholar 

  42. M. Gürbüz, T. Mutuk, J. Compos. Mater. 52, 543 (2018)

    Google Scholar 

  43. Z. Hu, G. Tong, Q. Nian, R. Xu, M. Saei, F. Chen, C. Chen, M. Zhang, H. Guo, J. Xu, Compos. Part B Eng. 93, 352 (2016)

    CAS  Google Scholar 

  44. G.E. Dieter, Mechanical Metallurgy, 1st edn. (McGraw-Hill, London, 1961), pp. 170–180

    Google Scholar 

  45. Z. Cao, X. Wang, J. Li, Y. Wu, H. Zhang, J. Guo, S. Wang, J. Alloy. Compd. 696, 498 (2017)

    CAS  Google Scholar 

  46. J.M. Torralba, C.E. Costa, F. Velasco, J. Mater. Process. Tech. 133, 203 (2003)

    CAS  Google Scholar 

  47. J.W. Kaczmar, K. Pietrzak, W. Wlosinski, J. Mater. Process. Tech. 106, 58 (2000)

    Google Scholar 

  48. J. Li, X. Zhang, L. Geng, Compos. Part A Appl. S. 121, 487 (2019)

    CAS  Google Scholar 

  49. M.K. Hassanzadeh-Aghdam, M.J. Mahmoodi, R.A. Ansari, J. Alloys Compd. 739, 164 (2018)

    CAS  Google Scholar 

  50. G. Monnet, S. Naamane, B. Devincre, Acta Mater. 59, 451 (2011)

    CAS  Google Scholar 

  51. C. Hofmeister, M. Klimov, T. Deleghanty, K. Cho, Y. Sohn, Mater. Sci. Eng. A Struct. 648, 412 (2015)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Ondokuz Mayıs University Scientific Researched Project Department. [grant numbers PYO.MUH.1902.15.001, PYO.MUH.1904.16.002]. The authors of this study thank Black Sea Advanced Technology Research and Application Center (KITAM) in Ondokuz Mayıs University (OMU) for SEM and XRD analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmut Can Şenel.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şenel, M.C., Gürbüz, M. Investigation on Mechanical Properties and Microstructure of B4C/Graphene Binary Particles Reinforced Aluminum Hybrid Composites. Met. Mater. Int. 27, 2438–2449 (2021). https://doi.org/10.1007/s12540-019-00592-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00592-w

Keywords

Navigation