Skip to main content
Log in

Study on Microstructure and Strengthening Sources of As-Cast Mg-Zn-RE-Zr Alloy during Heat Treatments

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The microstructure evolution and mechanical properties of as-cast ZE61 are presented in the article. The common eutectic Mg24(RE, Zn)5 phases and secondary phases are distributed on the matrix in the as-cast alloy. During the solid solution-treated processes at 510~540 °C, the grains become coarser at first and then stay stable with the increasing of solute temperature. The peak value 9.6% of elongation is obtained at 510 °C and the yield strength of 101MPa is obtained at 520 °C. Two strengthening models (Orowan equation and CE model) are used to estimate the precipitate strengthening and solid solution strengthening sources in the article. The precipitate strengthening is calculated by the Orowan equation through measuring the mean diameter of the precipitates (dp) and volume fraction of precipitates on the matrix (fv). The CE model assumes equivalent strengthening effects for different solute atoms; the increased amount of the critical resolved shear stress for basal slip is proportional to c2/3 or c1/2, where c is the average atomic concentration. The strengthening sources are calculated by above two models and the results are compared with each other. The strengthening sources of the pure Mg (denoted as σMg), solid solution strengthening (σss), the precipitate strengthening (σppt) and grain boundary strengthening (σgb) are calculated. The results of strengthening contribution of different sources can provide a new idea of strengthening method or heat-treatment process to strengthen the magnesium alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y.B. Jiang, L. Guan, G.Y. Tang, and Z.H. Zhang, Improved Mechanical Properties of Mg-9Al-1Zn Alloy by the Combination of Aging, Cold-Rolling and Electropulsing Treatment [J], J. Alloys Compd., 2015, 626, p 297–303.

    Article  CAS  Google Scholar 

  2. M.G. Jiang, H. Yan, and R.S. Chen, Enhanced Mechanical Properties Due to Grain Refinement and Texture Modification in an AZ61 Mg Alloy Processed by Small Strain Impact Forging [J], Mater. Sci. Eng. A, 2015, 621, p 204–211.

    Article  CAS  Google Scholar 

  3. A. Singh, M. Nakamura, M. Watanabe, A. Kato, and A.P. Tsai, QUASICRYSTAL Strengthened Mg-Zn-Y Alloys by Extrusion [J], Scripta Mater., 2003, 49, p 417–422.

    Article  CAS  Google Scholar 

  4. B.N. Du, Z.Y. Hu, and L.Y. Sheng et al., Microstructural Characteristics and Mechanical Properties of the Hot Extruded Mg-Zn-Y-Nd Alloys [J], J. Mater. Sci. Technol., 2021, 60, p 44–55.

    Article  CAS  Google Scholar 

  5. K. Liu, J. Zhang, D. Tang, L.L. Rokhlin, F.M. Elkin, and J. Meng, Precipitates Formed in a Mg-7Y-4Gd-0.5 Zn-0.4 Zr Alloy During Isothermal Ageing at 250 °C [J], Mater. Chem. Phys., 2009, 117, p 107–112.

    Article  CAS  Google Scholar 

  6. X.S. Xia, Q. Chen, S.H. Huang, J. Lin, C.K. Hu, and Z.D. Zhao, Hot Deformation Behavior of Extruded Mg-Zn-Y-Zr Alloy [J], J. Alloys Compd., 2015, 644, p 308–316.

    Article  CAS  Google Scholar 

  7. B.N. Du, Z.Y. Hu, and L.Y. Sheng et al., Influence of Zn Content on Microstructure and Tensile Properties of Mg-Zn-Y-Nd Alloy [J], Acta Metall. Sin. (English Letters), 2018, 31(4), p 351–361.

    Article  CAS  Google Scholar 

  8. Z.J. Yu, Y.D. Huang, W.M. Gan, C.L. Mendis, Z.Y. Zhong, Heinz G. Brokmeier, N. Hort, and J. Meng, Microstructure Evolution of Mg-11Gd-4.5 Y-1Nd-1.5 Zn-0.5 Zr (wt.%) Alloy During Deformation and its Effect on Strengthening [J], Mater. Sci. Eng. A, 2016, 657, p 259–268.

    Article  CAS  Google Scholar 

  9. Q.M. Peng, L. Wang, Y. Wu, and L. Wang, Structure Stability and Strengthening Mechanism of Die-Cast Mg-Gd-Dy Based Alloy [J], J. Alloys Compd., 2009, 469, p 587–592.

    Article  CAS  Google Scholar 

  10. K.Y. Zheng, J. Dong, X.Q. Zeng, and W.J. Ding, Precipitation and Its Effect on the Mechanical Properties of a Cast Mg-Gd-Nd-Zr Alloy [J], Mater. Sci. Eng. A, 2008, 489, p 44–54.

    Article  Google Scholar 

  11. X.H. Shao, Z.Q. Yang, and X.L. Ma, Strengthening and Toughening Mechanisms in Mg-Zn-Y Alloy With a Long Period Stacking Ordered Structure [J], Acta Mater., 2010, 58, p 4760–4771.

    Article  CAS  Google Scholar 

  12. C.L. Mendis, K. Oh-Ishi, Y. Kawamura, T. Honma, S. Kamado, and K. Hono, Precipitation-Hardenable Mg-2.4 Zn-0.1 Ag-0.1 Ca-0.16 Zr (at.%) Wrought Magnesium Alloy [J], Acta Mater., 2009, 57, p 749–760.

    Article  CAS  Google Scholar 

  13. K. Liu, J. Zhang, L.L. Rokhlin, F.M. Elkin, D. Tang, and J. Meng, Microstructures and mechanical properties of extruded Mg-8Gd-0.4 Zr alloys containing Zn [J], Mater. Sci. Eng. A, 2009, 505, p 13–19.

    Article  Google Scholar 

  14. S.Q. Liang, D.K. Guan, L. Chen, Z. Gao, H. Tang, X. Tong, and R. Xiao, Precipitation and Its Effect on Age-Hardening Behavior of As-Cast Mg-Gd-Y Alloy [J], Mater. Des., 2011, 32, p 361–364.

    Article  CAS  Google Scholar 

  15. D.J. Li, X.Q. Zeng, J. Dong, C.Q. Zhai, and W.J. Ding, Microstructure Evolution of Mg-10Gd-3Y-1.2 Zn-0.4 Zr Alloy During Heat-Treatment at 773 K [J], J. Alloys Compd., 2009, 468, p 164–169.

    Article  CAS  Google Scholar 

  16. X.Z. Han, W.C. Xu, and D.B. Shan, Effect of Precipitates on Microstructures and Properties of Forged Mg-10Gd-2Y-0.5 Zn-0.3 Zr Alloy During Ageing Process [J], J. Alloys Compd., 2011, 509, p 8625–8631.

    Article  CAS  Google Scholar 

  17. L.Y. Sheng, B.N. Du, and Z.Y. Hu et al., Effects of Annealing Treatment on Microstructure and Tensile Behavior of the Mg-Zn-Y-Nd Alloy [J], J. Magnes. Alloys, 2020, 8(3), p 601–613.

    Article  CAS  Google Scholar 

  18. S.B. Roy, G. Kannan, S. Suwas, and M.K. Surapp, Effect of Extrusion Ratio on the Microstructure, Texture and Mechanical Properties of (Mg/AZ91) m–SiCp Composite [J], Mater. Sci. Eng. A, 2015, 624, p 279–290.

    Article  CAS  Google Scholar 

  19. X.Z. Han, W.C. Xu, L. Yuan, and D.B. Shan, The Influences of Long Period Stacking Order Phase and Texture on Compressive Behavior of an Extruded Magnesium Alloy [J]: Mater, Sci. Eng. A, 2013, 568, p 246–255.

    Article  CAS  Google Scholar 

  20. N. Tahreen, D.F. Zhang, F.S. Pan, X.Q. Jiang, C. Li, D.Y. Li, and D.L. Chen, Characterization of Hot Deformation Behavior of an Extruded Mg-Zn-Mn-Y Alloy Containing LPSO Phase [J], J. Alloys Compd., 2015, 644, p 814–823.

    Article  CAS  Google Scholar 

  21. N. Subrahmanya Prasad, N. Naveen Kumar, R. Narasimhan, and S. Suwas, Fracture Behavior of Magnesium Alloys–Role of Tensile Twinning [J], Acta Mater., 2015, 94, p 281–293.

    Article  Google Scholar 

  22. E. Abe, Y. Kawamura, K. Hayashi, and A. Inoue, Long-Period Ordered Structure in a High-Strength Nanocrystalline Mg-1 at.% Zn-2 at.% Y Alloy Studied by Atomic-Resolution Z-Contrast STEM [J], Acta Mater., 2002, 50, p 3845–3857.

    Article  CAS  Google Scholar 

  23. A. Luo and M.O. Pekguleryuz, Cast Magnesium Alloys for Elevated Temperature Applications [J], J. Mater. Sci., 1994, 29, p 5259–5271.

    Article  CAS  Google Scholar 

  24. L. Gao, R.S. Chen, and E.H. Han, Effects of Rare-Earth Elements Gd and Y on the Solid Solution Strengthening of Mg Alloys [J], J. Alloys Compd., 2009, 481, p 379–384.

    Article  CAS  Google Scholar 

  25. B.Q. Han and D.C. Dunand, Microstructure and Mechanical Properties of Magnesium Containing High Volume Fractions of Yttria Dispersoids [J], Mater. Sci. Eng. A, 2000, 277, p 297–304.

    Article  Google Scholar 

  26. Y. Kojima, Platform Science and Technology for Advanced Magnesium Alloys [J], Mater. Sci. Forum., 2000, 350–351, p 3–18.

    Article  Google Scholar 

  27. M. Alok Singh, A. Watanabe, and A.P. Tsai. Kato, Microstructure and Strength of Quasicrystal Containing Extruded Mg-Zn-Y Alloys for Elevated Temperature Application [J], Mater Sci Eng A, 2004, 385, p 382–396.

    Article  Google Scholar 

  28. A.S. Argon, Strengthening Mechanisms in Crystal Plasticity [M], Oxford University Press Inc., New York, 2008.

    Google Scholar 

  29. J.F. Nie, Effects of Precipitate Shape and Orientation on Dispersion Strengthening in Magnesium Alloys [J], Scripta Mater., 2003, 48, p 1009–1015.

    Article  CAS  Google Scholar 

  30. Z. Yang, J.P. Li, Y.C. Guo, T. Liu, F. Xia, Z.W. Zeng, and M.X. Liang, Precipitation Process and Effect on Mechanical Properties of Mg-9Gd-3Y-0.6 Zn-0.5 Zr Alloy [J], Mater. Sci. Eng. A, 2007, 454–455, p 274–280.

    Article  Google Scholar 

  31. L. Jiang, J.J. Jonas, A.A. Luo, A.K. Sachdev, and S. Godet, Influence of 10-12 Extension Twinning on the Flow Behavior of AZ31 Mg Alloy [J], Mater. Sci. Eng. A, 2007, 302, p 445–446.

    Google Scholar 

  32. M. Matsuda, S. Ii, Y. Kawamura, Y. Ikuhara, and M. Nishid, Interaction Between Long Period Stacking Order Phase and Deformation Twin in Rapidly Solidified Mg97Zn1Y2 Alloy [J], Mater. Sci. Eng. A, 2004, 386, p 447–452.

    Article  Google Scholar 

  33. A. Akhtar and E. Teghtsoonian, Substitutional Solution Hardening of Magnesium Single Crystals [J], Philos. Mag., 1972, 25, p 897.

    Article  CAS  Google Scholar 

  34. S.M. He, X.Q. Zeng, and L.M. Peng et al., Microstructure and Strengthening Mechanism of High Strength Mg-10Gd-2Y-0.5 Zr Alloy [J], J. Alloys Compd., 2007, 427, p 316–323.

    Article  CAS  Google Scholar 

  35. X. Z. Han, Microstructure Evolution during Hot Working Process and Strengthening Mechanism of Mg-Zn-Zr-RE aLLOY, Dissertation, Harbin Institute of Technology, (2013)

Download references

Acknowledgment

This work is supported by Equipment Development Department (No. 50922010302) and the Fund for Distinguished Young Scholars of China Academy of Space Technology (2021399). The Analytical and Testing Centre of the Harbin Institute of Technology and University of Science and Technology Beijing are also thanked for the sample preparation and useful discussion of the TEM analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Z. Han.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special topical focus in the Journal of Materials Engineering and Performance on Magnesium. The issue was organized by Prof. C. (Ravi) Ravindran, Dr. Raja Roy, Mr. Payam Emadi and Mr. Bernoulli Andilab, Ryerson University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, X.Z., Cheng, Z.Z., Zhang, C. et al. Study on Microstructure and Strengthening Sources of As-Cast Mg-Zn-RE-Zr Alloy during Heat Treatments. J. of Materi Eng and Perform 32, 2552–2560 (2023). https://doi.org/10.1007/s11665-022-07045-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07045-3

Keywords

Navigation