Skip to main content

Advertisement

Log in

Modelling of Porous Titanium and Understanding Its Mechanical Behavior Using Micro-Computed Tomography

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Porous titanium based implants have found various use in dental implants, tissue and bone regeneration. In the present paper, a method of generating models of porous titanium material has been developed from micro-computed tomography radiograph images. Images are processed and three solid models are generated for analysis. To observe the stress contour and the failure initiation at micro level, a method of submodeling has been employed to investigate the effect of loading on the micro-computed tomography based models kept at the centre of a global model of near equivalent porosity. Equivalent, shear and normal stress profiles on the generated model have been analysed to quantify the variation of stress-strain nature and to predict the nature of failure at the micro-porous localized regions due to cyclic nature of loading. Additionally, the average wall shear stress of one of the scaffolds has been determined using Computational Fluid Dynamics analysis at three different inlet velocities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S.J. Simske, R.A. Ayers and T.A. Bateman, Porous Materials for Bone Engineering, Mater. Sci. Forum., 1997, 250, p 151–182.

    Article  CAS  Google Scholar 

  2. J. Banhart, Manufacture, Characterisation and Application of Cellular Metals and Metal Foams, Prog. Mater Sci., 2001, 46(6), p 559–632.

    Article  CAS  Google Scholar 

  3. R.G. Geesink, K. de Groot and C.P. Klein, Bonding of Bone to Apatite-Coated Implants, J Bone Joint Surg. Br. Vol., 1988, 70(1), p 17–22.

    Article  CAS  Google Scholar 

  4. A. Pal, P. Nasker, S. Paul, A.R. Chowdhury, A. Sinha and M. Das, Strontium Doped Hydroxyapatite from Mercenaria Clam Shells: Synthesis, Mechanical and Bioactivity Study, J. Mech. Behav. Biomed. Mater., 2019, 1(90), p 328–336.

    Article  Google Scholar 

  5. R. Oriňaková, R. Gorejová, Z. Orságová Králová and A. Oriňak, Surface Modifications of Biodegradable Metallic Foams for Medical Applications, Coatings, 2020, 10(9), p 819.

    Article  Google Scholar 

  6. K. Pałka, G. Adamek and J. Jakubowicz, Compression Behavior of Ti Foams with Spherical and Polyhedral Pores, Adv. Eng. Mater., 2016, 18(8), p 1511–1518.

    Article  Google Scholar 

  7. C.E. Wen, Y. Yamada, K. Shimojima, Y. Chino, T. Asahina and M. Mabuchi, Processing and Mechanical Properties of Autogenous Titanium Implant Materials, J. Mater. Sci. - Mater. Med., 2002, 13(4), p 397–401.

    Article  CAS  Google Scholar 

  8. M. Takemoto, S. Fujibayashi, M. Neo, J. Suzuki, T. Kokubo and T. Nakamura, Mechanical Properties and Osteoconductivity of Porous Bioactive Titanium, Biomaterials, 2005, 26(30), p 6014–6023.

    Article  CAS  Google Scholar 

  9. S.J. Hollister, Scaffold Design and Manufacturing: From Concept to Clinic, Adv. Mater., 2009, 21(32–33), p 3330–3342.

    Article  CAS  Google Scholar 

  10. M. Rana, S.K. Karmakar, B. Pal, P. Datta, A. Roychowdhury and A. Bandyopadhyay, Design and Manufacturing of Biomimetic Porous Metal Implants, J. Mater. Res., 2021, 36(19), p 3952–3962.

    Article  CAS  Google Scholar 

  11. M. Rana, A. Chaudhuri, J.K. Biswas, S.I. Karim, P. Datta, S.K. Karmakar and A. Roychowdhury, Design of Patient Specific Bone Stiffness Mimicking Scaffold, Proc. Inst. Mech. Eng. [H], 2021, 235(12), p 1453–1462.

    Article  Google Scholar 

  12. L. Gibson and Ashby, in Cellular Solids: Structure and Properties (Cambridge Solid State Science Series, 1999), pp. 175–234.

  13. S. Roy, N. Khutia, D. Das, M. Das, V.K. Balla, A. Bandyopadhyay and A.R. Chowdhury, Understanding Compressive Deformation Behavior of Porous Ti Using Finite Element Analysis, Mater. Sci. Eng. C, 2016, 1(64), p 436–443.

    Article  Google Scholar 

  14. A. Chakraborty, P. Datta, S. Majumder, S.C. Mondal and A. Roychowdhury, Finite Element and Experimental Analysis to Select Patient’s Bone Condition Specific Porous Dental Implant, Fabricated Using Additive Manufacturing, Comput. Biol. Med., 2020, 124, p 103839.

    Article  CAS  Google Scholar 

  15. C. Torres-Sanchez, F.R. Al Mushref, M. Norrito, K. Yendall, Y. Liu and P.P. Conway, The Effect of Pore Size and Porosity on Mechanical Properties and Biological Response of Porous Titanium Scaffolds, Mater. Sci. Eng. C., 2017, 77, p 219–228.

    Article  CAS  Google Scholar 

  16. I. Duarte, T. Fiedler, L. Krstulović-Opara and M. Vesenjak, Brief Review on Experimental and Computational Techniques for Characterization of Cellular Metals, Metals., 2020, 10(6), p 726.

    Article  Google Scholar 

  17. I. Vasconcelos, M. Franco, M. Pereira, I. Duarte, A. Ginjeira and N. Alves, 3D-Printed Multisampling Holder for Microcomputed Tomography Applied to Life and Materials Science Research, Micron, 2021, 1(150), p 103142.

    Article  Google Scholar 

  18. N. Tsafnat, N. Amanat and A.S. Jones, Analysis of Coke Under Compressive Loading: A Combined Approach Using Micro-computed Tomography, Finite Element Analysis, and Empirical Models of Porous Structures, Fuel, 2011, 90(1), p 384–388.

    Article  CAS  Google Scholar 

  19. R. Singh, P.D. Lee, T.C. Lindley, C. Kohlhauser, C. Hellmich, M. Bram, T. Imwinkelried and R.J. Dashwood, Characterization of the Deformation Behavior of Intermediate Porosity Interconnected Ti Foams Using Micro-Computed Tomography and Direct Finite Element Modeling, Acta Biomater., 2010, 6(6), p 2342–2351.

    Article  CAS  Google Scholar 

  20. T. Wejrzanowski, S.H. Ibrahim, J. Skibinski, K. Cwieka and K.J. Kurzydlowski, Appropriate Models for Simulating Open-Porous Materials, Image Anal. Stereol., 2017, 36(2), p 105–110.

    Article  CAS  Google Scholar 

  21. D. Heitor, I. Duarte and J. Dias-de-Oliveira, Aluminium Alloy Foam Modelling and Prediction of Elastic Properties Using x-ray Microcomputed Tomography, Metals., 2021, 11(6), p 925.

    Article  CAS  Google Scholar 

  22. D. Ali and S. Sen, Permeability and Fluid Flow-Induced Wall Shear Stress of Bone Tissue Scaffolds: Computational Fluid Dynamic Analysis Using Newtonian and Non-Newtonian Blood Flow Models, Comput. Biol. Med., 2018, 1(99), p 201–208.

    Article  Google Scholar 

  23. B. Liu and D. Tang, Influence of Non-Newtonian Properties of Blood on the Wall Shear Stress in Human Atherosclerotic Right Coronary Arteries, Mol. Cell. Biomech. MCB., 2011, 8(1), p 73.

    Google Scholar 

  24. F. Zhao, T.J. Vaughan and L.M. McNamara, Quantification of Fluid Shear Stress in Bone Tissue Engineering Scaffolds with Spherical and Cubical Pore Architectures, Biomech. Model. Mechanobiol., 2016, 15(3), p 561–577.

    Article  Google Scholar 

  25. B.P. Mahammod, E. Barua, P. Deb, A.B. Deoghare and K.M. Pandey, Investigation of Physico-mechanical Behavior, Permeability and Wall Shear Stress of Porous HA/PMMA Composite Bone Scaffold, Arab. J. Sci. Eng., 2020, 45(7), p 5505.

    Article  CAS  Google Scholar 

  26. H. Bart-Smith, A.F. Bastawros, D.R. Mumm, A.G. Evans, D.J. Sypeck and H.N. Wadley, Compressive Deformation and Yielding Mechanisms in Cellular Al Alloys Determined Using X-ray Tomography and Surface Strain Mapping, MRS Online Proce Libr (OPL), 1998 https://doi.org/10.1557/PROC-521-71

    Article  Google Scholar 

  27. J. Šleichrt, T. Fíla, P. Koudelka, M. Adorna, J. Falta, P. Zlámal, J. Glinz, M. Neuhäuserová, T. Doktor, A. Mauko and D. Kytýř, Dynamic Penetration of Cellular Solids: Experimental Investigation Using Hopkinson Bar and Computed Tomography, Mater. Sci. Eng. A., 2021, 7(800), p 140096.

    Article  Google Scholar 

  28. C. Veyhl, I.V. Belova, G.E. Murch and T. Fiedler, Finite Element Analysis of the Mechanical Properties of Cellular Aluminium Based on Micro-Computed Tomography, Mater. Sci. Eng., A, 2011, 528(13–14), p 4550–4555.

    Article  Google Scholar 

  29. L. Osagie-Clouard, J. Kaufmann, G. Blunn, M. Coathup, C. Pendegrass, R. Meeson, T. Briggs and M. Moazen, Biomechanics of Two External Fixator Devices Used in Rat Femoral Fractures, J. Orthop. Res., 2019, 37(2), p 293–8.

    Article  Google Scholar 

  30. P. Vossenberg, G.A. Higuera, G. Van Straten, C.A. Van Blitterswijk and A.J. Van Boxtel, Darcian Permeability Constant as Indicator for Shear Stresses in Regular Scaffold Systems for Tissue Engineering, Biomech. Model. Mechanobiol., 2009, 8(6), p 499–507.

    Article  Google Scholar 

  31. X. Xue, M.K. Patel, M. Kersaudy-Kerhoas, M.P. Desmulliez, C. Bailey and D. Topham, Analysis of Fluid Separation in Microfluidic T-Channels, Appl. Math. Model., 2012, 36(2), p 743–755.

    Article  Google Scholar 

  32. I. Maskery, A.O. Aremu, L. Parry, R.D. Wildman, C.J. Tuck and I.A. Ashcroft, Effective Design and Simulation of Surface-Based Lattice Structures Featuring Volume Fraction and Cell Type Grading, Mater. Des., 2018, 5(155), p 220–232.

    Article  Google Scholar 

  33. A. Du Plessis, I. Yadroitsava, I. Yadroitsev, S.G. Le Roux and D.C. Blaine, Numerical Comparison of Lattice Unit Cell Designs for Medical Implants by Additive Manufacturing, Virtual and Physical Prototyping., 2018, 13(4), p 266–281.

    Article  Google Scholar 

  34. F.M. White, Fluid Mechanics, McGraw-Hill, New York, 2008.

    Google Scholar 

  35. D. Egger, M. Fischer, A. Clementi, V. Ribitsch, J. Hansmann and C. Kasper, Development and Characterization of a Parallelizable Perfusion Bioreactor for 3D Cell Culture, Bioengineering, 2017, 4(2), p 51.

    Article  Google Scholar 

  36. J.W. Gooch Ed., Encyclopedic Dictionary of Polymers, Springer, Berlin, 2010

    Google Scholar 

  37. A. Lesman, Y. Blinder and S. Levenberg, Modeling of Flow-Induced Shear Stress Applied on 3D Cellular Scaffolds: Implications for Vascular Tissue Engineering, Biotechnol. Bioeng., 2010, 105(3), p 645–654.

    Article  CAS  Google Scholar 

  38. A. Campos Marin and D. Lacroix, The Inter-sample Structural Variability of Regular Tissue-Engineered Scaffolds Significantly Affects the Micromechanical Local Cell Environment, Interface Focus., 2015, 5(2), p 20140097.

    Article  CAS  Google Scholar 

  39. E.E. Aşik, B. Tunca, G.I. Nakaş and Ş Bor, Fatigue Behavior of 51 vol.% Porous Ti-6Al-4V Alloy, Mater. Sci. Forum, 2014, 783, p 1221–1225.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Roy Chowdhury.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharyya, R., Rana, M., Gupta, A. et al. Modelling of Porous Titanium and Understanding Its Mechanical Behavior Using Micro-Computed Tomography. J. of Materi Eng and Perform 31, 8160–8168 (2022). https://doi.org/10.1007/s11665-022-06827-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06827-z

Keywords

Navigation