Skip to main content

Overview of Mechanics of Porous Dental Implants

  • Conference paper
  • First Online:
Techno-societal 2022 (ICATSA 2022)

Abstract

The making of porous proposals for bone ingrowth into dental implant materials has undergone recent advances, which have been discussed. Due to the same design criteria for dental implants and different materials created for orthopedic implants in accumulation bone tissue engineering. Utilizing conventional techniques to produce porous titanium is difficult. To simulate the biological and mechanical characteristics of natural bone, a designer can now create more regular porous structures with varied pore sizes, shapes, percentages, and distributions. This is made possible by the advancement of additive manufacturing technology. The research in this field is encouraging and lays the groundwork for innovative advancements in dental implant proposal for patient role with lessened bone remedial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Han, Q., Wang, C., Chen, H., Zhao, X., & Wang, J. (2019). Porous tantalum and titanium in orthopedics: A review. ACS Biomaterials Science & Engineering, 5(11), 5798–5824.

    Article  Google Scholar 

  2. Jemat, A., Ghazali, M. J., Razali, M., & Otsuka, Y. (2015). Surface modifications and their effects on titanium dental implants. BioMed Research International, 2015.

    Google Scholar 

  3. Pałka, K., & Pokrowiecki, R. (2018). Porous Titanium implants: A review. Advanced Engineering Materials, 20(5), 1–18.

    Article  Google Scholar 

  4. Bencharit, S. et al. (2014). Development and applications of porous tantalum trabecular metal-enhanced titanium dental implants. Clinical Implant Dentistry and Related Research, 817–826.

    Google Scholar 

  5. Schiefer, H., Bram, M., Buchkremer, H. P., & Stöver, D. (2009). Mechanical examinations on dental implants with porous titanium coating. Journal of Materials Science. Materials in Medicine, 20(8), 1763–1770.

    Article  Google Scholar 

  6. Asaoka, K., Kuwayama, N., Okuno, O., & Miura, I. (1985). Mechanical properties and biomechanical compatibility of porous titanium for dental implants. Journal of Biomedical Materials Research, 19(6), 699–713.

    Article  Google Scholar 

  7. Saini, M. (2015). Implant biomaterials: A comprehensive review. World Journal of Clinical Cases, 3(1), 52.

    Article  Google Scholar 

  8. Anitua, E., Tapia, R., & Luzuriaga, F (2009). The adaptation of implant osseointe.

    Google Scholar 

  9. Trueba, P., Navarro, C., Rodríguez-Ortiz, J. A., Beltrán, A. M., García-García, F. J., & Torres, Y. (2021) Fabrication and characterization of superficially modified porous dental implants. Surface and Coatings Technology, 408(January).

    Google Scholar 

  10. Keller, J. C., Young, F. A., & Hansel, B. (1985). Systemic effects of porous Ti dental implants. Dental Materials, 1(2), 41–42.

    Article  Google Scholar 

  11. Xiong, Y., Gao, R., Zhang, H., & Li, X. (2019). Design and fabrication of a novel porous titanium dental implant with micro/nano surface. International Journal of Applied Electromagnetics and Mechanics, 59(3), 1097–1102.

    Article  Google Scholar 

  12. Piglionico, S., Bousquet, J., Fatima, N., Renaud, M., Collart-dutilleul, P. Y., & Bousquet, P. (2020). Porous tantalum versus Titanium implants: Enhanced mineralized matrix formation after stem cells proliferation and differentiation. Journal of Clinical Medicine, 9(11), 1–15.

    Article  Google Scholar 

  13. Fialho, L., Grenho, L., Fernandes, M. H., & Carvalho, S. (2021). Porous tantalum oxide with osteoconductive elements and antibacterial core-shell nanoparticles: A new generation of materials for dental implants. Materials Science and Engineering C, 120, 111761.

    Article  Google Scholar 

  14. Edelmann, A. R., Patel, D., Allen, R. K., Gibson, C. J., Best, A. M., & Bencharit, S. (2019). Retrospective analysis of porous tantalum trabecular metal–enhanced titanium dental implants. Journal of Prosthetic Dentistry, 121(3), 404–410.

    Article  Google Scholar 

  15. Revathi, A., Borrás, A. D., Muñoz, A. I., Richard, C., & Manivasagam, G. (2017). Degradation mechanisms and future challenges of titanium and its alloys for dental implant applications in oral environment, vol. 76. Elsevier B.V.

    Google Scholar 

  16. Menu, A. (1999). Search menu announcement thumb _ up textsms, 9.

    Google Scholar 

  17. Smith, T. M. (2014). Current trends in dental morphology research.

    Google Scholar 

  18. Topkaya, T., Solmaz, M. Y., Dündar, S., & Eltas, A. (2015). Numerical analysis of the effect of implant geometry to stress distributions of the three different commercial dental implant system. Cumhuriyet Dental Journal, 18(1), 17–24.

    Article  Google Scholar 

  19. Baggi, L., Cappelloni, I., Maceri, F., & Vairo, G. (2008). Stress-based performance evaluation of osseointegrated dental implants by finite-element simulation. Simulation Modelling Practice and Theory, 16(8), 971–987.

    Article  Google Scholar 

  20. “Published online by Cambridge University Press: 31 January 2011 Article contents”, (January), 9–10.

    Google Scholar 

  21. Menu, J. With interconnected 3D porous structures (I3D) a proof-of-concept, 1–10.

    Google Scholar 

  22. Weinstein, A. M., Klawitter, J. J., Anand, S. C., & Schuessler, R. (1977). Stress analysis of porous rooted dental implants. Implantologist, 1(2), 104–109.

    Google Scholar 

  23. Franciosa, P., & Martorelli, M. (2012). Stress-based performance comparison of dental implants by finite element analysis. International Journal on Interactive Design and Manufacturing, 6(2), 123–129. https://doi.org/10.1007/s12008-012-0155-y

    Article  Google Scholar 

  24. Stability, E. (2008). Applied osseointegration, 6(February).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasuudhaa Sonawane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sonawane, V., Ghorpade, R.R. (2024). Overview of Mechanics of Porous Dental Implants. In: Pawar, P.M., et al. Techno-societal 2022. ICATSA 2022. Springer, Cham. https://doi.org/10.1007/978-3-031-34644-6_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34644-6_61

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34643-9

  • Online ISBN: 978-3-031-34644-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics