Skip to main content
Log in

Effect of Environment on Fatigue Crack Growth Behavior of Type 316 LN Stainless Steel and its Weldments

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Corrosion fatigue crack growth (CFCG) behavior of type 316LN stainless steel (SS) and its weldments are studied in acidified 5M NaCl + 0.15M Na2SO4 + 2.5 ml/l HCl medium under open circuit condition at a stress ratio (R) of 0.5 (R = ΔKmin/ΔKmax) and at a frequency (η) of 0.1 Hz for different stress intensity factor range (ΔK). At a value of ΔK corresponding to stress intensity factor for stress corrosion cracking (KISCC = 27.5 MPa.m0.5), the Paris region deviates from linearity as the crack growth/cycle increases dramatically for the base and weld metal indicating Type B behavior of an environmentally assisted cracking process. CFCG rate is compared with fatigue crack growth (FCG) rate at room temperature (RT) and at 450°C (HT). Type 316N weld metal (WM) showed lower threshold (ΔKth) values and higher crack growth rates (CGRs) than type 316LN SS. Cracking initiated in the transgranular (TG) mode for both the metallurgical conditions. Besides TG cracking of the austenite, dissolution of delta-ferrite (δ-Fe) was observed in the weld metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. K.S. Kang, Heavy Components Replacement in Nuclear Power Plants: Guidelines and Experiences, Press. Vessels Pip. Conf., 2010, 49262, p 229–235.

    Google Scholar 

  2. J.W. Simmons, Overview: High-Nitrogen Alloying of Stainless Steels, Mater. Sci. Eng., 1996, 207, p 159–169.

    Article  Google Scholar 

  3. D. Du, J. Wang, K. Chen, L. Zhang and P.L. Andresen, Environmentally Assisted Cracking of Forged 316LN Stainless Steel and Its Weld in High Temperature Water, Corros. Sci., 2019, 147, p 69–80.

    Article  CAS  Google Scholar 

  4. Z. Zhang, J. Tan, X. Wu, E.H. Han, W. Ke and J. Rao, Effects of Temperature on Corrosion Fatigue Behavior of 316LN Stainless Steel in High-Temperature Pressurized Water, Corros. Sci., 2019, 146, p 80–89.

    Article  CAS  Google Scholar 

  5. M.O. Speidel and R.M. Pedrazzoli, High nitrogen stainless steels in chloride solutions, Mater. Perfm., 1992, 31(9), p 59–61.

    CAS  Google Scholar 

  6. R.F.A. Jargelius-Pettersson, Electrochemical Investigation of the Influence of Nitrogen Alloying on Pitting Corrosion of Austenitic Stainless Steels, Corros. Sci., 1999, 41, p 1639–1664.

    Article  CAS  Google Scholar 

  7. A. Poonguzhali, M.G. Pujar and U.K. Mudali, Effect of Nitrogen and Sensitization on the Microstructure and Pitting Corrosion Behavior of AISI type 316LN Stainless Steels, J Mater. Eng. Perform., 2013, 22, p 1170–1178.

    Article  CAS  Google Scholar 

  8. A.S. Vanini, J.P. Audouard and P. Marcus, The Role of Nitrogen in the Passivity of Austenitic Stainless Steels, Corros. Sci., 1994, 36, p 1825–1834.

    Article  Google Scholar 

  9. R.D. Willenbruch, C.R. Clayton, M. Oversluizen, D. Kim and Y. Lu, An XPS and Electrochemical Study of the Influence of Molybdenum and Nitrogen on the Passivity of Austenitic Stainless Steel, Corros. Sci., 1990, 31, p 179–190.

    Article  CAS  Google Scholar 

  10. H. Ha and H. Kwon, Effects of Cr2N on the Pitting Corrosion of High Nitrogen Stainless Steels, Electrochim. Acta., 2007, 52, p 2175–2180.

    Article  CAS  Google Scholar 

  11. D. Féron, Nuclear Corrosion Science and Engineering, Woodhead Publishing, Philadelphia, 2012.

    Book  Google Scholar 

  12. T.R. Allen and J.T. Busby, Radiation Damage Concerns for Extended Light Water Reactor Service, Jom., 2009, 61, p 29–34.

    Article  CAS  Google Scholar 

  13. A.F. Liu, Mechanics and Mechanisms of Fracture: An Introduction, ASM International, USA, 2005.

    Book  Google Scholar 

  14. P. Paris and F. Erdogan, A Critical Analysis of Crack Propagation Laws, J. Basic. Eng., 1963, 85, p 528–534.

    Article  CAS  Google Scholar 

  15. P.C. Paris, A Rational Analytic Theory of Fatigue, The trend in Eng., 1961, 13, p 9–14.

    Google Scholar 

  16. A. Poonguzhali, S. Ningshen and G. Amarendra, Corrosion Fatigue Crack Initiation of Type 316N Weldment Under the Influence of Cyclic Stress Amplitude, Met. Mater. Int., 2020, 26, p 1545–1554.

    Article  CAS  Google Scholar 

  17. H. Shaikh, A. Poonguzhali, N. Sivaibharasi, R.K. Dayal and H.S. Khatak, Corrosion Fatigue of AISI Type 316LN Stainless Steel and its Weld Metal, Corros., 2009, 65, p 37–48.

    Article  CAS  Google Scholar 

  18. Test Method for Evaluating Stress corrosion cracking resistance of metals and alloys in a boiling magnesium chloride solution. G 36-94(2006), Annual Book of ASTM Standards, 2018, p 1-29.

  19. Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIc of Metallic Materials. E 399, Annual Book of ASTM Standards, ASTM, 1997, p 413-443.

  20. Test Method for Measurement of Fatigue Crack Growth Rates. E 647, Annual Book of ASTM Standards, 2015, p 1-49.

  21. S.J. Hudak Jr., Small Crack Behavior and the Prediction of Fatigue Life, J Eng. Mater. Technol. Trans., 1981, 103, p 26–35.

    Article  CAS  Google Scholar 

  22. R.O. Ritchie and S. Suresh, Some Considerations on Fatigue Crack Closure at Near-Threshold Stress Intensities due to Fracture Surface Morphology, Metall. Trans. A, 1982, 13, p 937–940.

    Article  CAS  Google Scholar 

  23. S. Suresh, Fatigue of Materials, Cambridge University Press, Cambridge, 1998.

    Book  Google Scholar 

  24. J. Petit, C and Sarrazin-Baudoux, Some Critical Aspects of Low Rate Fatigue Crack Propagation in Metallic Materials, Int. J. Fatigue., 2010, 32, p 962–970.

    Article  CAS  Google Scholar 

  25. M.N. Babu and G. Sasikala, Effect of Temperature on the Fatigue Crack Growth Behaviour of SS316L (N), Int. J. Fatig., 2020, 140, p 105815. https://doi.org/10.1016/j.ijfatigue.2020.105815

    Article  CAS  Google Scholar 

  26. K.G. Samuel, G. Sasikala and S.K. Ray, On R Ratio Dependence of Threshold Stress Intensity Factor Range for Fatigue Crack Growth in Type 316 (N) Stainless Steel Weld, Mater. Sci. Technol., 2011, 27, p 371–376.

    Article  CAS  Google Scholar 

  27. H. Shaikh, T. Anita, R.K. Dayal and H.S. Khatak, Effect of Metallurgical Variables on the Stress Corrosion Crack Growth Behaviour of AISI Type 316LN Stainless Steel, Corros. Sci., 2010, 52, p 1146–1154.

    Article  CAS  Google Scholar 

  28. H.R. Baker, M.C. Bloom, R.N. Bolster and C.R. Singleterry, Film and pH Effects in the Stress Corrosion Cracking of Type 304 Stainless Steel, Corros., 1970, 26, p 420–426.

    Article  CAS  Google Scholar 

  29. F. Menan and G. Henaff, Synergistic Action of Fatigue and Corrosion During Crack Growth in the 2024 Aluminium Alloy, Proc. Eng., 2010, 2, p 1441–1450.

    Article  Google Scholar 

  30. K.S. Chan, Roles of Microstructure in Fatigue Crack Initiation, Int. J. Fatigue., 2010, 32, p 1428–1447.

    Article  CAS  Google Scholar 

  31. L. Tang, C. Qian, A. Ince, J. Zheng, H. Li and Z. Han, Fatigue Crack Growth Behavior of the MIG Welded Joint of 06Cr19Ni10 Stainless Steel, Materials, 2018, 11, p 1336. https://doi.org/10.3390/ma11081336

    Article  CAS  Google Scholar 

  32. J. Petit, G. Henaff and C. Sarrazin-Baudoux, Environmentally Assisted Fatigue in the Gaseous Atmosphere, Compr. Struct. Integr., 2003, 6, p 211–280.

    Article  Google Scholar 

  33. V.D. Vijayanand, K. Laha, P. Parameswaran, V. Ganesan and M.D. Mathew, Microstructural evolution during creep of 316LN stainless steel multi-pass weld joints, Mater. Sci. Eng. A, 2014, 607, p 138–144.

    Article  CAS  Google Scholar 

  34. C.K. Lin and I.L. Lan, Fatigue Behavior of AISI 347 Stainless Steel in Various Environments, J. Mater. Sci., 2004, 39, p 6901–6908.

    Article  CAS  Google Scholar 

  35. R.P. Wei and G. Shim, Fracture mechanics and corrosion fatigue, Corrosion Fatigue: Mechanics, Metallurgy, Electrochemistry, and Engineering. T.W. Crooker, B.N. Leis Ed., . ASTM STP 801. Philadelphia, 1983, p 5–25

    Chapter  Google Scholar 

  36. K. Makhlouf and J.W. Jones, Effects of Temperature and Frequency on Fatigue Crack Growth in 18% Cr Ferritic Stainless Steel, Int. J. Fatigue., 1993, 15, p 163–171.

    Article  CAS  Google Scholar 

  37. H. Shaikh, G. George, H.S. Khatak, F. Schneider and K. Mummert, Stress Corrosion Crack Growth Studies on Nitrogen Added AISI type 316 Stainless Steel and its Weld Metal in Boiling Acidified Sodium Chloride Solution Using the Fracture Mechanics Approach, Mater. Corros., 2000, 51, p 719–727.

    Article  CAS  Google Scholar 

  38. G. Sasikala, M. Nani Babu, B. Shashank Dutt and S. Venugopal, Characterisation of Fatigue Crack Growth and Fracture Behaviour of SS 316L (N) Base and Weld Materials, Adv. Mater. Res., 2013, 794, p 449–459.

    Article  Google Scholar 

  39. T.P.S. Gill, U.K. Mudali, V. Seetharaman and J.B. Gnanamoorthy, Effect of Heat Input and Microstructure on Pitting Corrosion in AISI 316L Submerged Arc Welds, Corros., 1988, 44, p 511–516.

    Article  CAS  Google Scholar 

  40. M.G. Pujar, R.K. Dayal, T.P.S. Gill and S.N. Malhotra, Evaluation of Microstructure and Electrochemical Corrosion Behavior of Austenitic 316 Stainless Steel Weld Metals with Varying Chemical Compositions, J. Mater. Eng. Perform., 2005, 14, p 327–342.

    Article  CAS  Google Scholar 

  41. L. Dong, Q. Peng, Z. Zhang, T. Shoji, E.H. Han, W. Ke and L. Wang, Effect of Dissolved Hydrogen on Corrosion of 316NG Stainless Steel in High Temperature Water, Nucl. Eng. Des., 2015, 295, p 403–414.

    Article  CAS  Google Scholar 

  42. K. Mukahiwa, F. Scenini, M.G. Burke, N. Platts, D.R. Tice and J.W. Stairmand, Corrosion Fatigue and Microstructural Characterisation of Type 316 Austenitic Stainless Steels Tested in PWR Primary Water, Corros. Sci., 2018, 131, p 57–70.

    Article  CAS  Google Scholar 

  43. R. Soulas, M. Cheynet, E. Rauch, T. Neisius, L. Legras, C. Domain and Y. Brechet, TEM Investigations of the Oxide Layers Formed on a 316L Alloy in Simulated PWR Environment, J. Mater. Sci., 2013, 48, p 2861–2871.

    Article  CAS  Google Scholar 

  44. W.A. Baeslack, W.F. Savage and D.J. Duquette, Effect of Strain Rate on Stress Corrosion Cracking in Duplex type 304 Stainless Steel Weld Metal, Metall. Trans. A., 1979, 10, p 1429–1435.

    Article  Google Scholar 

  45. A. Poonguzhali, M.G. Pujar, C. Mallika and U. Kamachi Mudali, Characterisation of Microstructural Damage Due to Corrosion Fatigue in AISI type 316 LN Stainless Steels with Different Nitrogen Contents, Corros. Eng. Sci. Tech., 2016, 51, p 408–415.

    Article  CAS  Google Scholar 

  46. J. Man, M. Valtr, M. Petrenec, J. Dluhoš, I. Kuběna, K. Obrtlik and J. Polak, AFM and SEM-FEG Study on Fundamental Mechanisms Leading to Fatigue Crack Initiation, Int. J. Fatig., 2015, 76, p 11–18.

    Article  CAS  Google Scholar 

Download references

Funding

This study received no any funding or NIL funded.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ningshen.

Ethics declarations

Conflict of interest

The authors declare that they have no known conflict in financial interests or personal relationships that could influence the work reported in this paper. The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poonguzhali, A., Babu, M.N., Ravi, S. et al. Effect of Environment on Fatigue Crack Growth Behavior of Type 316 LN Stainless Steel and its Weldments. J. of Materi Eng and Perform 31, 3918–3929 (2022). https://doi.org/10.1007/s11665-021-06496-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06496-4

Keywords

Navigation