Skip to main content
Log in

Radiation damage concerns for extended light water reactor service

  • Materials Issues in Nuclear Reactors / Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The objective of this paper is to examine the possible forms of irradiation damage that may impact materials performance over an extended service period in light water nuclear reactors. This paper will explore the different forms of irradiation damage that may be of concern under extended operation. Radiation-induced segregation, precipitation, hardening, embrittlement, and dimensional changes all will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. NUREG-1801, Generic Aging Lessons Learned (GALL) Report, Summary, Vol. 1 (Washington, D.C.: U.S. Nuclear Regulatory Commission, 2001).

    Google Scholar 

  2. K. Asano et al., “Changes in Grain Boundary Composition Induced by Neutron Irradiation on Austenitic Stainless Steels,” Proc. Fifth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems — Water Reactors, ed. D. Cubicciotti, E.P. Simonen, and R.E. Gold (LaGrange, IL: American Nuclear Society, 1992), p. 838.

    Google Scholar 

  3. A. Jacobs, “Effects of Low Temperature Annealing on the Microstructure and Grain Boundary Chemistry of Irradiated Type 304SS and Correlations with IASCC Resistance,” Proc. Seventh International Conference on Environmental Degradation of Materials in Nuclear Power Systems — Water Reactors (Houston, TX: NACE International, 1995), p. 1021.

    Google Scholar 

  4. A.J. Jacobs et al., “The Correlation of Grain Boundary Composition in Irradiated Stainless Steel with IASCC Resistance,” Proc. Sixth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems — Water Reactors, ed. R.E. Gold and E.P. Simonen (Warrendale, PA: TMS, 1993), p. 597.

    Google Scholar 

  5. E.A. Kenik, J. Nucl. Mater., 187 (1992), p. 239.

    Article  ADS  CAS  Google Scholar 

  6. S. Nakahigashi et al., J. Nucl. Mater., 179–181 (1992), p 1061.

    Google Scholar 

  7. A.J. Jacobs et al., “Influence of Grain Boundary Composition on the IASCC Susceptibility of Type 348 Stainless Steel,” Proc. Fourth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems — Water Reactors, ed. D. Cubicciotti (Houston, TX: National Association of Corrosion Engineers, 1990), pp. 14–21.

    Google Scholar 

  8. J. Walmsley et al., “Microchemical Characterization of Grain Boundaries in Irradiated Steels,” Proc. Seventh International Symposium on Environment Degradation of Materials in Nuclear Power System-Water Reactors (Houston, TX: NACE International, 1997), p. 985.

    Google Scholar 

  9. S.M. Bruemmer et al., J. Nucl. Mater., 274 (1999), pp. 299–314.

    Article  ADS  CAS  Google Scholar 

  10. G.S. Was et al., J. Nucl. Mater., 300 (2002), p. 198.

    Article  ADS  CAS  Google Scholar 

  11. P.J. Maziasz, J. Nucl. Mater., 169 (1989), p. 95.

    Article  ADS  CAS  Google Scholar 

  12. E.H. Lee, P.J. Maziasz, and A.F. Rowcliffe, Phase Stability During Irradiation, ed. J.R. Holland, L.K. Mansur, and D.I. Porter (Warrendale, PA: TMS-AIME, 1981), p. 191.

    Google Scholar 

  13. P.J. Maziasz and C.J. McHargue, Internat. Matls. Rev., 32 (1987), p. 190.

    CAS  Google Scholar 

  14. P.J. Maziasz, J. Nucl. Mater., 205 (1993), p. 118.

    Article  ADS  CAS  Google Scholar 

  15. P.J. Maziasz, MiCon 86: Optimization of Processing, Properties and Service Performance Through Microstructural Control, ASTM-STP-979 (Philadelphia, PA: Am. Soc. For Testing and Matls., 1988), p. 116.

    Book  Google Scholar 

  16. S.J. Zinkle, P.J. Maziasz, and R.E. Stoller, J. Nucl. Mater., 206 (1993), p. 266.

    Article  ADS  CAS  Google Scholar 

  17. T.R. Allen et al., J. Nucl. Mater., 255 (1998), pp. 44–58.

    Article  ADS  CAS  Google Scholar 

  18. Julie Tucker et al., “Ab Initio Defect Properties for Modeling Radiation-Induced Segregation in Fe-Ni-Cr Alloys,” 13th Environmental Degradation of Materials In Nuclear Power Systems 2007, ed. T.R. Allen, J.T. Busby, and P.J. King (Toronto, ON, Canada: Canadian Nuclear Society, 2007).

    Google Scholar 

  19. NUREG-1801, Generic Aging Lessons Learned (GALL) Report, Tabulation of Results, Vol. 2 (Washington, D.C.: U.S. Nuclear Regulatory Commission, 2001).

    Google Scholar 

  20. R.D. Leggett and L.C. Walters, J. Nucl. Mater., 204 (1993), p. 23.

    Article  ADS  CAS  Google Scholar 

  21. D.J. Edwards et al., “Influence of Irradiation Temperature and Dose Gradients on the Microstructural Evolution in Neutron-irradiated 316SS,” J. Nucl. Materials, 317 (2003), pp. 32–45.

    Article  ADS  CAS  Google Scholar 

  22. J.T. Busby, M.C. Hash, and G.S. Was, “The Relationship Between Hardness and Yield Stress in Irradiated Austenitic and Ferritic Steels,” J. Nucl. Mater., 336(2–3) (2005), pp. 267–278.

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. T. Busby.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allen, T.R., Busby, J.T. Radiation damage concerns for extended light water reactor service. JOM 61, 29–34 (2009). https://doi.org/10.1007/s11837-009-0099-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-009-0099-2

Keywords

Navigation