Skip to main content
Log in

Corrosion Fatigue Crack Initiation of Type 316N Weldment Under the Influence of Cyclic Stress Amplitude

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Corrosion fatigue behavior of type 316N stainless steel (SS) weldments on the damage characteristics is studied. The S–N curve of the fatigue life versus stress amplitude showed a specific two slope Basquin relationship. At low stress amplitude, the deformation microstructure consists mainly of planar slip dislocation structure and at high-stress amplitudes, planar multiple slip dislocations govern the cyclic behavior. A correlation between microstructural changes and the corresponding susceptibility of 316N SS weldment in as-welded condition towards environmental cracking in boiling acidified aqueous solution has been presented. The objective of the present study is to investigate the environmental effects on the corrosion fatigue crack initiation of type 316N weldmetal under the influence of cyclic stress amplitude. The difference in deformation micro mechanisms with stress amplitude in a corrosive environment is believed to be the major reason for the occurrence of a specific bilinear Basquin relationship in the S–N curve.

Graphic Abstract

A schematic of corrosion fatigue crack initiation involving the emergence of a slip step and dissolution of the step on the surface: (a): before cyclic loading (b): fatigue crack initiation and (stage I and II) crack propagation during cyclic loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. A. Poonguzhali, M.G. Pujar, C. Mallika, U. Kamachi Mudali, Corros. Eng. Sci. Technol. 22, 408–415 (2016).

    Article  Google Scholar 

  2. V. Shankar, in Weldability of Austenitic Stainless Steels, ed. by B. Raj, V. Shankar, A.K. Bhaduri (N.K. Mehra for Narosa Publishing House, New Delhi, 2006), pp. 37–48

    Google Scholar 

  3. M.G. Pujar, N. Parvathavarthini, R.K. Dayal, Mater. Chem. Phys. 123, 497–505 (2010)

    Article  Google Scholar 

  4. T. Anita, H. Shaikh, H.S. Khatak, G. Amarendra, Corrosion 60, 873–880 (2004)

    Article  CAS  Google Scholar 

  5. Y. Kondo, Corrosion 45, 7–11 (1989)

    Article  CAS  Google Scholar 

  6. S. Xu, X.Q Wu, E.H Han, W. Ke, Y. Katada, Mater. Sci. Eng. A 490, 16–25 (2008)

    Article  Google Scholar 

  7. C. Laird, D.J. Duquette, in Corrosion Fatigue: Chemistry, Mechanics and Microstructure ed. by O. Devereux, A.J. McEvily, R.W. Staehle (National Association of Corrosion Engineers NACE, Houston, 1973), pp. 88–117

    Google Scholar 

  8. R. Pelloux, J.M. Genkin, in Fatigue des matériauxet des structures, ed. by C. Bathias, A. Pineau (Hermès, Paris, 2008), pp. 141–52

    Google Scholar 

  9. M. El Maya, T. Palin-Luc, N. Saintier, O. Devos, Int. J. Fatigue 47, 330–339 (2013)

    Article  Google Scholar 

  10. R.P. Gangloff, Environmental Cracking: Corrosion Fatigue, Chapter 26, Corrosion Test and Standard Manual (1995) pp 1–20 

  11. T. Pyle, V. Rollins, T. Howard, J. Electrochem. Soc. 122, 1445–1453 (1975)

    Article  CAS  Google Scholar 

  12. H.N. Hahn, D.J. Duquette, Acta. Metall. 26, 279–287 (1978)

    Article  CAS  Google Scholar 

  13. T. Magnin, ISIJ. Int. 35, 223–233 (1995)

    Article  CAS  Google Scholar 

  14. T. Magnin, L. Coudreuse, Mater. Sci. Eng. 72, 125–134 (1985)

    Article  CAS  Google Scholar 

  15. G. Srinivasan, A.K. Bhaduri, Trans. Indian Inst. Met. 60, 399–406 (2007)

    CAS  Google Scholar 

  16. Specification for Radiographic Inspection of Welds, Document No. PFBR/01950/ SP/1001/R-1, Indira Gandhi Centre for Atomic Research, Kalpakkam (1988)

  17. ASTM E466–07, Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials, ASTM International, West Conshohocken, PA (2007)

  18. S.R. Mediratta, V. Ramaswamy, P. Rama Rao, Scr. Metall. 20, 555–558 (1986)

    Article  CAS  Google Scholar 

  19. G.V. Prasad Reddy, R. Sandhya, M. Valsan, K. Bhanu Sankara Rao, Int. J. Fatigue, 30, 538–546 (2008)

    Article  Google Scholar 

  20. M. Valsan, K. Bhanu Sankara Rao, R. Sandhya, S.L. Mannan, Mater. Sci. Eng. A 149, L9-L12 (1992)

    Article  Google Scholar 

  21. F. Cura, A.E. Gallinatti, Proc. Eng. 10, 1697–1702 (2011)

    Article  Google Scholar 

  22. Z.R. Xu, K.K. Chawla, A. Wolfenden, A. Neuman, G.M. Liggett, N. Chawla, Mater. Sci. Eng. A 203A, 75–80 (1995)

    Article  Google Scholar 

  23. O.K. Chopra, J.L. Smith, in Fatigue, Environmental Factors, and New Materials, PVP, ed. by H.S. Mehta, R.W. Swindeman, J.A. Todd, S. Yukawa, M. Zako, W.H. Bamford, M. Higuchi, E. Jones, H. Nickel, S. Rahman (American Society of Mechanical Engineers, New York, 1998) pp. 249–259

    Google Scholar 

  24. Y.R. Qian, J.R. Cahoon, Corrosion 53, 129–135 (1997)

    Article  CAS  Google Scholar 

  25. U. Kamachi Mudali, Pitting, intergranular corrosion and passive film in nitrogen-bearing austenitic stainless steels. Ph.D. Dissertation, University of Madras (1993)

  26. S. Suresh, Fatigue of Materials, 2nd edn. (Cambridge University Press, Cambridge, 1998)

    Book  Google Scholar 

  27. H. Shaikh, A. Poonguzhali, N. Sivaibharasi, R.K. Dayal, H.S. Khatak, Corrosion 65, 37–48 (2009)

    Article  CAS  Google Scholar 

  28. K.A. Mohammad, A. Ali, B.B. Sahariand, S. Abdullah, Mater. Sci. Eng. 36, 012012 (2012)

    Google Scholar 

  29. H. Mughrabi, Proc. Eng. 2, 3–26 (2010)

    Article  CAS  Google Scholar 

  30. L.M. Brown, in Proceedings of the International Conference on Dislocation Modeling of Physical Systems, ed. by C.S Hartley, M.F Ashby, R. Bullough, J. P Hirth (Pergamon Press, New York, 1980), pp. 51–68

  31. C.W. Shao, P. Zhang, Z.J. Zhang, R. Liu, Z.F. Zhang, Metall. Mater. Trans. A 48, 5833–5848 (2017)

    Article  CAS  Google Scholar 

  32. X.W. Li, N. Peng, X.M. Wu, Z.G. Wang, Metall. Mater. Trans. A 45, 3835–3843 (2014)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ningshen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poonguzhali, A., Ningshen, S. & Amarendra, G. Corrosion Fatigue Crack Initiation of Type 316N Weldment Under the Influence of Cyclic Stress Amplitude. Met. Mater. Int. 26, 1545–1554 (2020). https://doi.org/10.1007/s12540-019-00408-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00408-x

Keywords

Navigation