Skip to main content
Log in

Effect of Heat Input on Microstructure and Mechanical Properties of Friction Stir Welded AA6092/17.5 SiCp-T6

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this work, the effect of variation in heat input on friction stir welding of 6 mm thick AA6092/ 17.5 SiCp-T6 aluminum matrix composite joints is analyzed. The effect of heat input on torque and force, time-temperature profile, microstructure and mechanical properties is studied. Heat input to the weld was controlled by varying traverse speed while keeping other process variables constant. The investigation shows that the cooling rate gradually increases from 3.32 to 5.72°C/s when the heat input decreases from 1915.4 to 1004.8 J/mm. Thereafter it increases rapidly to 14.1°C/s when the heat input further decreases to 730.76 J/mm. The particle size in the weld area decreases due to fragmentation as the heat input decreases from high to moderate and then again increases. The overall microhardness of the weld area increases with a decrease in heat input. The joint efficiency of 72, 88 and 84% is found as heat input decrease from high to low heat. The fractography shows a ductile mode of failure at moderate heat input, whereas at higher and lower heat input a mixed-mode of failure is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A. Bhowmik, D. Dey, A. Biswas, Comparative Study of Microstructure, Physical and Mechanical Characterization of SiC/TiB2 Reinforced Aluminium Matrix Composite. Silicon 13:2003–2010 (2021). https://doi.org/10.1007/s12633-020-00591-2

    Article  CAS  Google Scholar 

  2. J.W. Kaczmar, K. Pietrzak, W, Włosiński, The Production and Application of Metal Matrix Composite Materials. J. Mater. Process. Technol. 106(1–3): 58–67 (2000) https://doi.org/10.1016/S0924-0136(00)00639-7

    Article  Google Scholar 

  3. G. Moona, R.S. Walia, V. Rastogi, R. Sharma, Aluminium Metal Matrix Composites: A Retrospective Investigation. Indian J. Pure Appl. Phys. (IJPAP) 56(2): 164–175 (2018)

    Google Scholar 

  4. F. Nturanabo, L. Masu, J.B. Kirabira. Novel Applications of Aluminium Metal Matrix Composites. In Aluminum Alloys and Composites. IntechOpen (2019)

  5. F.A. Girot, J.M. Quenisset, R. Naslain, Discontinuously-Reinforced Aluminum Matrix. Composites Compos. Sci. Technol. 30(3): 155–184 (1987) https://doi.org/10.1016/0266-3538(87)90007-8

    Article  CAS  Google Scholar 

  6. U Acharya BS Roy SC Saha, Torque and Force Perspectives on Particle Size and its Effect on Mechanical Property of Friction Stir Welded AA6092/17.5 SiCp-T6 Composite Joints. J. Manuf. Process. 38: 113–121 (2019) https://doi.org/10.1016/j.jmapro.2019.01.009

    Article  Google Scholar 

  7. U. Acharya, B.S. Roy, S.C. Saha, A Study of Tool Wear and its Effect on the Mechanical Properties of Friction Stir Welded AA6092/175 SiCp Somposite Material Joint Mater. Today: Proc. 5(9): 20371–20379 (2018)

    CAS  Google Scholar 

  8. U. Acharya, B.S. Roy, S.C. Saha, Effect of Tool Rotational Speed on the Particle Distribution in Friction Stir Welding of AA6092/17.5 SiCp-T6 Composite Plates and its Consequences on the Mechanical Property of the Joint. Def. Technol. (2019) https://doi.org/10.1016/j.dt.2019.08.017

    Article  Google Scholar 

  9. U. Acharya, B.S. Roy, S.C. Saha, On the Role of Tool tilt Angle on Friction Stir Welding of Aluminum Matrix Composites, SILICON (2020) https://doi.org/10.1007/s12633-020-00405-5

    Article  Google Scholar 

  10. O.S. Salih, H. Ou, X. Wei, W. Sun, Microstructure and Mechanical Properties of Friction Stir Welded AA6092/SiC Metal Matrix Composite, Mater. Sci. Eng., A 742: 78–88 (2019) https://doi.org/10.1016/j.msea.2018.10.116

    Article  CAS  Google Scholar 

  11. L.E. Murr, Y. Li, R.D. Flores, E.A. Trillo, J.C. McClure, Intercalation Vortices and Related Microstructural Features in the Friction-Stir Welding of Dissimilar Metals. Mater. Res. Innov. 2: 150–163 (1998) https://doi.org/10.1007/HHI00190050078

    Article  CAS  Google Scholar 

  12. E.T. Akinlabi, A. Els-Botes, P.J. McGrath. Effect of Travel Speed on Joint Properties of Dissimilar Metal Friction Stir Welds. 2nd international Conference on Advances in Engineering and Technology (2011)

  13. Ø. Frigaard, Ø. Grong, O.T. Midling, A Process Model for Friction Stir Welding of Age Hardening Aluminum Alloys. Metall. Mater. Trans. A. 32(5): 1189–1200 (2001) https://doi.org/10.1007/HHI1661-001-0128-4

    Article  Google Scholar 

  14. P. Xue, G.M. Xie, B.L. Xiao, Z.Y. Ma, L. Geng. Effect of Heat Input Conditions on Microstructure and Mechanical Properties of Friction-Stir-Welded Pure Copper. Metall. Mater. Trans. A, 41(8) (2010) https://doi.org/10.1007/HHI1661-010-0254-y

  15. H.B. Schmidt, J.H. Hattel, Thermal Modelling of Friction Stir Welding. ScriptaMaterialia 58(5): 332–337 (2008) https://doi.org/10.1016/j.scriptamat.2007.10.008

    Article  CAS  Google Scholar 

  16. S.V. Sujith, R.S. Mulik, Thermal History Analysis and Structure-Property Validation of Friction Stir Welded Al-7079-TiC In-Situ Metal Matrix Composites. J. Alloy. Compd. 812: 152131 (2020) https://doi.org/10.1016/j.jallcom.2019.152131

    Article  CAS  Google Scholar 

  17. T. Singh, S.K. Tiwari, D.K. Shukla, Mechanical and Microstructural Characterization of Friction Stir Welded AA6061-T6 Joints Reinforced with Nano-Sized Particles. Mater. Charact. 159: 110047 (2020)

    Article  CAS  Google Scholar 

  18. T. Singh, S.K. Tiwari, D.K. Shukla, Effects of Al2O3 Nanoparticles Volume Fractions on Microstructural and Mechanical Characteristics of Friction Stir Welded Nanocomposites. Nanocompos. 6(2): 76–84 (2020)

    Article  CAS  Google Scholar 

  19. T. Singh, S.K. Tiwari, D.K. Shukla, Effect of Nano-Sized Particles on Grain Structure and Mechanical Behavior of Friction Stir Welded Al-Nanocomposites. Proc. Inst. Mech. Eng., Part L: J. Mater.: Des. Appl. 234(2): 274–290 (2020)

    Article  CAS  Google Scholar 

  20. M. Bodaghi, K. Dehghani, Friction Stir Welding of AA5052: The Effects of SiC Nano-Particles Addition. Int. J. Adv. Manuf. Technol. 88(9–12): 2651–2660 (2017)

    Article  Google Scholar 

  21. P.N. Karakizis, D.I. Pantelis, G. Fourlaris, P. Tsakiridis, Effect of SiC and TiC Nanoparticle Reinforcement on the Microstructure, Microhardness, and Tensile Performance of AA6082-T6 Friction Stir Welds. Int. J. Adv. Manuf. Technol. 95(9): 3823–3837 (2018)

    Article  Google Scholar 

  22. V.K. Prakash. Microstructure and Hardness Distribution in Friction Stir Welded Al6061-TiB2 In-Situ Metal Matrix Composite. Proceedings of 09th IRF International Conference; 2014 July 27; Bengaluru, India, p. 100–103

  23. A. Hamdollahzadeh, M. Bahrami, M.F. Nikoo, A. Yusefi, M.B. Givi, N. Parvin, Microstructure Evolutions and Mechanical Properties of Nano-SiC-Fortified AA7075 Friction Stir Weldment: The Role of Second Pass Processing. J. Manuf. Process. 20: 367–373 (2015)

    Article  Google Scholar 

  24. T. Singh, S.K. Tiwari, D.K. Shukla. Novel method of nanoparticle addition for friction stir welding of aluminium alloy. Adv. Mater. Process. Technol. 1–13 (2020)

  25. T. Singh, S.K. Tiwari, D.K. Shukla, Processing Parameters Optimization to Produce Nanocomposite Using Friction Stir Welding. Eng. Res. Express 1(2): 025048 (2019)

    Article  Google Scholar 

  26. T.E. Abioye, H. Zuhailawati, A.S. Anasyida, S.A. Yahaya, B.K. Dhindaw, Investigation of the Microstructure, Mechanical and Wear Properties of AA6061-T6 Friction Stir Weldments with Different Particulate Reinforcements Addition. J. Market. Res. 8(5): 3917–3928 (2019)

    CAS  Google Scholar 

  27. T.R. McNelley, S. Swaminathan, J.Q. Su, Recrystallization mechanisms during friction stir welding/processing of aluminum alloys Scripta Mater. 58(5): 349–354 (2008)

    Article  CAS  Google Scholar 

  28. F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena Elsevier (2012)

    Google Scholar 

  29. Y.F. Sun, H. Fujii, The Effect of SiC Particles on the Microstructure and Mechanical Properties of Friction Stir Welded Pure Copper Joints Mater. Sci. Eng., A 528(16–17): 5470–5475 (2011)

    Article  CAS  Google Scholar 

  30. T. Medhi, M.K. Yadava, B.S. Roy, S.C. Saha, An Experimental Investigation on Implications of Traverse Speed in Joining of Dissimilar Al–Cu by Friction Stir Welding. Int. J. Adv. Manuf. Technol. 104(1–4): 1461–1471 (2019) https://doi.org/10.1007/s00170-019-04086-2

    Article  Google Scholar 

  31. S. Narendranath, D. Chakradhar, Microstructure, Hardness and Tensile Properties of Friction Stir Welded Aluminum Matrix Composite Reinforced with SiC and Fly Ash. SILICON 11(6): 2557–2565 (2019)

    Article  Google Scholar 

  32. R. Nandan, T. DebRoy, H.K.D.H. Bhadeshia, Recent Advances in Friction-Stir Welding–Process, Weldment Structure and Properties. Prog. Mater Sci. 53(6): 980–1023 (2008) https://doi.org/10.1016/j.pmatsci.2008.05.001

    Article  CAS  Google Scholar 

  33. H. Suthar, A. BhaTtacharya, S.K. Paul, Local Deformation Response and Failure Behavior of AA6061-AA6061 and AA6061-AA7075 Friction Stir Welds. CIRP J. Manuf. Sci. Technol. (2020) https://doi.org/10.1016/j.cirpj.2020.03.006

    Article  Google Scholar 

  34. T. Singh, S.K. Tiwari, D.K. Shukla, Preparation of Aluminium Alloy-Based Nanocomposites via Friction Stir Welding. Mater. Today: Proc. 27: 2562–2568 (2020)

    CAS  Google Scholar 

  35. H.M. Jamalian, H. Ramezani, H. Ghobadi, M. Ansari, S. Yari, M.K.B. Givi, Processing–Structure–Property Correlation in Nano-SiC-Reinforced Friction Stir welded Aluminum Joints. J. Manuf. Process. 21: 180–189 (2016)

    Article  Google Scholar 

  36. I. Dinaharan, Influence of Ceramic Particulate Type on Microstructure and Tensile Strength of Aluminum Matrix Composites Produced Using Friction Stir Processing. J. Asian Ceram. Soc. 4(2): 209–218 (2016) https://doi.org/10.1016/j.jascer.2016.04.002

    Article  Google Scholar 

  37. R.S. Mishra, Z.Y. Ma, Friction Stir Welding and Processing. Mater. Sci. Eng. R. Rep. 50(1–2): 1–78 (2005) https://doi.org/10.1016/j.mser.2005.07.001

    Article  CAS  Google Scholar 

  38. A.A. Fallahi, A. Shokuhfar, A.O. Moghaddam, A. Abdolahzadeh, Analysis of SiC Nano-Powder Effects on Friction Stir Welding of Dissimilar Al-Mg Alloy to A316L Stainless Steel. J. Manuf. Process. 30 418–430 (2017)

    Article  Google Scholar 

  39. T. Singh, S.K. Tiwari, D.K. Shukla. Influence of Nanoparticle Addition (TiO 2) on Microstructural Evolution and Mechanical Properties of Friction Stir Welded AA6061-T6 Joints. In Advances in Production and Industrial Engineering (pp. 219–228). Springer, Singapore (2021)

  40. T. Singh, S.K. Tiwari, D.K. Shukla, Production of AA6061-T6/Al2O3 Reinforced Nanocomposite Using Friction Stir Welding. Eng. Res. Express 1(2): 025052 (2019)

    Article  Google Scholar 

  41. A. Banik, J.D. Barma, S.C. Saha, Effect of Threaded Pin Tool for Friction Stir Welding of AA6061-T6 at Varying Traverse Speeds: Torque and force Analysis. Iran. J. Sci. Technol., Trans. Mech. Eng. (2019) https://doi.org/10.1007/s40997-019-00289-w

    Article  Google Scholar 

  42. T. Singh, S.K. Tiwari, D.K. Shukla, Friction-stir welding of AA6061-T6: The effects of Al2O3 nano-particles addition Results Mater. 1: 100005 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to MHRD, GOI for providing the funds in terms of Ph.D. scholarship for carry out the study. The author gratefully acknowledges the help of DWA ALUMINUM COMPOSITES USA for providing the required material. The author also acknowledges ACMS and MSE department IIT Kanpur for their support for conducting the testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uttam Acharya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acharya, U., Yadava, M.K., Banik, A. et al. Effect of Heat Input on Microstructure and Mechanical Properties of Friction Stir Welded AA6092/17.5 SiCp-T6. J. of Materi Eng and Perform 30, 8936–8946 (2021). https://doi.org/10.1007/s11665-021-06122-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06122-3

Keywords

Navigation