Skip to main content
Log in

On the Role of Tool Tilt Angle on Friction Stir Welding of Aluminum Matrix Composites

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The current study investigates the influence of tool tilt angle (TTA) on the mechanical strength of friction stir welded aluminum matrix composite (AMC). Aerospace-grade AA6092/ 17.5 SiCp- T6 plates of 6 mm thickness have been welded at different TTA of 1̊, 2̊ and 3̊ with fixed tool rotational speed of 1000 rpm and tool traverse speed of 1 mm/s. A conical pin-shaped tool of H13 tool steel having a hardness of 56 HRC has been used with a tool dimension of 16 mm shoulder dia., 6 mm pin root dia., and 4 mm tool tip dia. In order to study the microhardness, tensile strength, fracture toughness and fracture behavior of the joint the weld bead appearance, macrostructure and microstructure have been investigated. Results show that with an increase in TTA, the excessive flashing has been occurred in the weld bead and also affects the ratio of shoulder influenced region and pin influenced region in the macrostructure. The presence of detrimental Al2O3 has been found inside the weld at TTA of 3̊. It has found that the mechanical property of the joint increases as TTA increases from 1̊ to 2̊ and thereafter it decreases. The fractographic analysis shows a mixed-mode of failure for all the samples except for the TTA of 3̊ where it shows brittle failure. Overall the study suggests the implication of 1̊ to 2̊ TTA to get a sound weld of this particular type of AMC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kaczmar JW, Pietrzak K, Włosiński W (2000) The production and application of metal matrix composite materials. J Mater Process Technol 106(1–3):58–67. https://doi.org/10.1016/S0924-0136(00)00639-7

    Article  Google Scholar 

  2. Moona G, Walia RS, Rastogi V, Sharma R (2018) Aluminium metal matrix composites: a retrospective investigation. Indian Journal of Pure & Applied Physics (IJPAP) 56(2):164–175

    Google Scholar 

  3. Yahya B (2011) Weldability of metal matrix composite plates by friction stir welding at low welding parameters. Mater Technol 45(5):407–412

    Google Scholar 

  4. Periyasamy P, Mohan B, Balasubramanian V, Rajakumar S, Venugopal S (2013) Multi-objective optimization of friction stir welding parameters using desirability approach to join Al/SiCp metal matrix composites. Trans Nonferrous Metals Soc China 23(4):942–955. https://doi.org/10.1016/S1003-6326(13)62551-0

  5. Kumar A, Veeresh Nayak C, Herbert MA, Rao SS (2014) Microstructure and hardness of friction stir welded aluminium–copper matrix-based composite reinforced with 10 wt-% SiCp. Mater Res Innov 18(sup6):S6–S84. https://doi.org/10.1179/1432891714Z.0000000001016

  6. Bhaskar S, Kumar M, Patnaik A (2019) Silicon carbide ceramic particulate reinforced AA2024 alloy composite-part I: evaluation of mechanical and sliding tribology performance. Silicon:1–23. https://doi.org/10.1007/s12633-019-00181-x

  7. Bodunrin MO, Alaneme KK, Chown LH (2015) Aluminium matrix hybrid composites: a review of reinforcement philosophies; mechanical, corrosion and tribological characteristics. J Mater Res Technol 4(4):434–445. https://doi.org/10.1016/j.jmrt.2015.05.003

    Article  CAS  Google Scholar 

  8. Nair SV, Tien JK, Bates RC (1985) SiC-reinforced aluminium metal matrix composites. Int Metals Rev 30(1):275–290. https://doi.org/10.1179/imtr.1985.30.1.275

    Article  CAS  Google Scholar 

  9. Khan MM, Dixit G (2018) Abrasive Wear characteristics of silicon carbide particle reinforced zinc based composite. Silicon 10(4):1315–1327. https://doi.org/10.1007/s12633-017-9607-0

    Article  CAS  Google Scholar 

  10. Zuo L, Zhao X, Li Z, Zuo D, Wang H (2019) A review of friction stir joining of SiCp/Al composites. Chin J Aeronaut. https://doi.org/10.1016/j.cja.2019.07.019

  11. Liu Q, Wang F, Wu W, An D, He Z, Xue Y et al (2019) Enhanced mechanical properties of SiC/Al composites at cryogenic temperatures. Ceram Int 45(3):4099–4102. https://doi.org/10.1016/j.ceramint.2018.10.233

    Article  CAS  Google Scholar 

  12. Prater T (2014) Friction stir welding of metal matrix composites for use in aerospace structures. Acta Astronautica 93:366–373. https://doi.org/10.1016/j.actaastro.2013.07.023

    Article  CAS  Google Scholar 

  13. Falsafi J, Rosochowska M, Jadhav P, Tricker D (2017) Lower cost automotive piston from 2124/SiC/25p metal-matrix composite. SAE Int J Engines 10(4):1984–1992 https://www.jstor.org/stable/26422585

    Article  Google Scholar 

  14. Storjohann D, Barabash OM, David SA, Sklad PS, Bloom EE, Babu SS (2005) Fusion and friction stir welding of aluminum-metal-matrix composites. Metall Mater Trans A 36(11):3237–3247. https://doi.org/10.1007/s11661-005-0093-4

    Article  Google Scholar 

  15. Boromei I, Ceschini L, Morri A, Garagnani GL (2006) Friction stir welding of aluminium based composites reinforced with a L2O3 particles: effects on microstructure and charpy impact energy. Metall Sci Tecnol 24(1)

  16. Mishra RS, Ma ZY (2005) Friction stir welding and processing. Materials Science and Engineering: R: Reports 50(1–2):1–78. https://doi.org/10.1016/j.mser.2005.07.001

    Article  CAS  Google Scholar 

  17. Zhang YN, Cao X, Larose S, Wanjara P (2012) Review of tools for friction stir welding and processing. Can Metall Q 51(3):250–261. https://doi.org/10.1179/1879139512Y.0000000015

    Article  CAS  Google Scholar 

  18. Thomas W, Nicholas E, Needham J, Murch M, Temple-Smith P, Dawes C (1991) Friction Stir Butt Welding, International Patent No. PCT/GB92/02203, GB Patent No.9125978.8, 1991, U.S. Patent No. 5,460,317, 1995

  19. Acharya U, Roy BS, Saha SC (2019) Effect of tool rotational speed on the particle distribution in friction stir welding of AA6092/17.5 SiCp-T6 composite plates and its consequences on the mechanical property of the joint. Def Technol. https://doi.org/10.1016/j.dt.2019.08.017

  20. Acharya U, Roy BS, Saha SC (2018) A study of tool wear and its effect on the mechanical properties of friction stir welded AA6092/17.5 Sicp composite material joint. Materials Today: Proceedings 5(9):20371–20379. https://doi.org/10.1016/j.matpr.2018.06.412

    Article  CAS  Google Scholar 

  21. Sujith SV, Mulik RS (2020) Thermal history analysis and structure-property validation of friction stir welded Al-7079-TiC in-situ metal matrix composites. J Alloys Compd 812:152131. https://doi.org/10.1016/j.jallcom.2019.152131

    Article  CAS  Google Scholar 

  22. Salih OS, Ou H, Wei X, Sun W (2019) Microstructure and mechanical properties of friction stir welded AA6092/SiC metal matrix composite. Mater Sci Eng A 742:78–88. https://doi.org/10.1016/j.msea.2018.10.116

    Article  CAS  Google Scholar 

  23. Raja P (2018) Investigations on mechanical and metallurgical properties of friction welding of AlB 2 reinforced aluminum matrix composites. Silicon 10(4):1385–1391. https://doi.org/10.1007/s12633-017-9615-0

    Article  CAS  Google Scholar 

  24. Acharya U, Roy BS, Saha SC (2019) Torque and force perspectives on particle size and its effect on mechanical property of friction stir welded AA6092/17.5 SiCp-T6 composite joints. J Manuf Process 38:113–121. https://doi.org/10.1016/j.jmapro.2019.01.009

    Article  Google Scholar 

  25. Elyasi M, Aghajani Derazkola H, Hosseinzadeh M (2016) Investigations of tool tilt angle on properties friction stir welding of A441 AISI to AA1100 aluminium. Proc Inst Mech Eng B J Eng Manuf 230(7):1234–1241. https://doi.org/10.1177/0954405416645986

    Article  CAS  Google Scholar 

  26. Barlas Z, Ozsarac U (2012) Effects of FSW parameters on joint properties of AlMg3 alloy. Weld J 91(1):16S–22S

    Google Scholar 

  27. Grujicic M, Arakere G, Pandurangan B, Ochterbeck JM, Yen CF, Cheeseman BA, Sutton MA (2012) Computational analysis of material flow during friction stir welding of AA5059 aluminum alloys. J Mater Eng Perform 21(9):1824–1840. https://doi.org/10.1007/s11665-011-0069-z

    Article  CAS  Google Scholar 

  28. Ranjith R, Senthil Kumar B (2014) Joining of dissimilar aluminium alloys AA2014 T651 and AA6063 T651 by friction stir welding process. WSEAS Trans Appl Theor Mech 9:179–186

  29. Kimapong K, Watanabe T (2005) Effect of welding process parameters on mechanical property of FSW lap joint between aluminum alloy and steel. Mater Trans 46(10):2211–2217. https://doi.org/10.2320/matertrans.46.2211

    Article  CAS  Google Scholar 

  30. Mehta KP, Badheka VJ (2016) Effects of tilt angle on the properties of dissimilar friction stir welding copper to aluminum. Mater Manuf Process 31(3):255–263. https://doi.org/10.1080/10426914.2014.994754

    Article  CAS  Google Scholar 

  31. Bhushan RK, Sharma D (2019) Optimization of parameters for maximum tensile strength of friction stir welded AA6082/Si 3 N 4 and AA6082/SiC composite joints. Silicon:1–15. https://doi.org/10.1007/s12633-019-00216-3

  32. Banik A, Roy BS, Barma JD, Saha SC (2018) An experimental investigation of torque and force generation for varying tool tilt angles and their effects on microstructure and mechanical properties: friction stir welding of AA 6061-T6. J Manuf Process 31:395–404. https://doi.org/10.1016/j.jmapro.2017.11.030

    Article  Google Scholar 

  33. Lee JA, Carter RW, Ding J (1999) Friction stir welding for aluminum metal matrix composites (MMC’s). MSFC Center Director's Discretionary Fund Final Report, Project, (98-09), 1-21

  34. Salih OS, Ou H, Sun W, McCartney DG (2015) A review of friction stir welding of aluminium matrix composites. Mater Des 86:61–71. https://doi.org/10.1016/j.matdes.2015.07.071

    Article  CAS  Google Scholar 

  35. Palanivel R, Dinaharan I, Laubscher RF, Davim JP (2016) Influence of boron nitride nanoparticles on microstructure and wear behavior of AA6082/TiB2 hybrid aluminum composites synthesized by friction stir processing. Mater Des 106:195–204. https://doi.org/10.1016/j.matdes.2016.05.127

    Article  CAS  Google Scholar 

  36. Keshavamurthy R, Prakash CPS (2014) Microstructure and hardness distribution in friction stir welded Al6061-TiB2 in-situ metal matrix composite. Int J Mech Prod Eng 2:73–76

    Google Scholar 

Download references

Acknowledgments

The authors humbly thank MHRD, GOI for providing the funds in terms of Ph.D. scholarship for carryout the study. The author gratefully acknowledges the support of the DWA ALUMINUM COMPOSITES USA for providing the required material from Chatsworth, California, USA. The author also acknowledges ACMS and MSE department IIT Kanpur and the strength of material lab, mechanical engineering department IIT Guwahati for the smooth conduct of the testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uttam Acharya.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acharya, U., Roy, B.S. & Saha, S.C. On the Role of Tool Tilt Angle on Friction Stir Welding of Aluminum Matrix Composites. Silicon 13, 79–89 (2021). https://doi.org/10.1007/s12633-020-00405-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00405-5

Keywords

Navigation