Skip to main content
Log in

Phase Transformation and Hot Working Studies on High-Al Fe-Al-Mn-C Ferritic Low-Density Steels

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Studies on phase transformations in Fe-11Al-5Mn-1C (Alloy 1) and Fe-11Al-10Mn-1C (Alloy 2) ferritic low-density steels were carried out using differential thermal analysis (DTA) and dilatometry (all compositions in wt.%). An appreciable difference was observed between the phase transformation temperatures predicted by the ThermoCalc software and the experimental values. The ferrite + kappa carbide → austenite phase transformation started around 1017 °C for Alloy 1 and 960 °C for Alloy 2. The dissolution of carbides was completed around 1115 °C and 1050 °C for Alloy 1 and Alloy 2, respectively. Studies on water quenched alloys were carried out to confirm the phase transformation temperatures. Both the alloys were hot rolled at 1000 °C. The rolled alloys exhibited high yield and tensile strength due to the presence of a large volume fraction of kappa carbides. After hot rolling, Alloy 2 exhibited higher ductility than Alloy 1. This is attributed to the presence of a higher volume fraction of metastable austenite in Alloy 2. Reasons for the presence of metastable austenite are discussed. Fracture surfaces of the tensile samples revealed crack initiation and propagation along ferrite-kappa carbide interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

5. References

  1. G. Frommeyer and U. Brox, Microstructures and Mechanical Properties of High-Strength Fe-Mn-AI-C Light-Weight TRIPLEX Steels, Steel Res. Int., 2006, 77, p 627–633.

    Article  CAS  Google Scholar 

  2. M. Palm and G. Inden, Experimental Determination of Phase Equilibria in the Fe-Al-C System, Intermetallics, 1995, 3, p 443–454.

    Article  CAS  Google Scholar 

  3. X. Li, A. Scherf, M. Heilmaier and F. Stein, The Al-Rich Part of the Fe-Al Phase Diagram, J. Phase Equilibria Diffus., 2016, 37(2), p 162–173.

    Article  CAS  Google Scholar 

  4. A. Schneider, L. Falat, G. Sauthoff and G. Frommeyer, Microstructures and Mechanical Properties of Fe3Al-Based Fe–Al–C Alloys, Intermetallics, 2005, 13, p 1322–1331.

    Article  CAS  Google Scholar 

  5. Y. Feng, R. Song, S. Peng, Z. Pei and R. Song, Microstructures and Impact Wear Behavior of Al-Alloyed High-Mn Austenitic Cast Steel After Aging Treatment, J. Mater. Eng. Perform., 2019, 28(8), p 4845–4855.

    Article  CAS  Google Scholar 

  6. K. Chin, H. Lee, J. Kwak, J. Kang and B. Lee, Thermodynamic Calculation on the Stability of (Fe, Mn) 3 AlC Carbide in High Aluminum Steels, J. Alloys Compd., 2010, 505(1), p 217–223.

    Article  CAS  Google Scholar 

  7. W. Cheng, Y. Song, Y. Lin, K. Chen and P.C. Pistorius, On the Eutectoid Reaction in a Quaternary Fe-C-Mn-Al Alloy: Austenite Fi Ferrite + Kappa-Carbide + M 23 C 6 Carbide, Metall. Mater. Trans. A, 2014, 45(March), p 1199–1216.

    Article  CAS  Google Scholar 

  8. W. Cheng, Phase Transformations of an Fe-0.85C-17.9 Mn-7.1Al Austenitic Steel After Quenching and Annealing, JOM, 2014, 66(9), p 1809–1820.

    Article  CAS  Google Scholar 

  9. Y. Kimura, K. Handa, K. Hayashi and Y. Mishima, Microstructure Control and Ductility Improvement of the Two-Phase γ-Fe/κ-(Fe, Mn)3AlC Alloys in the Fe–Mn–Al–C Quaternary System, Intermetallics, 2004, 12, p 607–617.

    Article  CAS  Google Scholar 

  10. K. Sato, K. Tagawa and Y. Inoue, Age Hardening of an Fe-30Mn-9Al-0.9C Alloy, Scr. Mater., 1988, 22, p 899–902.

    CAS  Google Scholar 

  11. S. Khaple, R.G. Baligidad, V.V. Satya Prasad and D.V.V. Satyanarayana, Microstructure and Mechanical Properties of Fe–7Al Based Lightweight Steel Containing Carbon, Mater. Sci. Technol., 2015, 31(12), p 1408–1416.

    Article  CAS  Google Scholar 

  12. Z. Cai, H. Ding, Z. Ying and R.D.K. Misra, Microstructural Evolution and Deformation Behavior of a Hot-Rolled and Heat Treated Fe-8Mn-4Al-0.2C Steel, J. Mater. Eng. Perform., 2014, 23, p 1131–1137.

    Article  CAS  Google Scholar 

  13. M. Eskandari, A. Zarei-Hanzaki, A.R. Kamali, M.A. Mohtadi-Bonab and J.A. Szpunar, Strain Hardening During Hot Compression Through Planar Dislocation and Twin-Like Structure in a Low-Density High-Mn Steel, J. Mater. Eng. Perform., 2014, 23(10), p 3567–3576.

    Article  CAS  Google Scholar 

  14. J.D. Yoo and K. Park, Microband-Induced Plasticity in a High Mn–Al–C Light Steel, Mater. Sci. Eng. A, 2008, 496, p 417–424.

    Article  Google Scholar 

  15. J.D. Yoo, S.W. Hwang and K. Park, Communication Origin of Extended Tensile Ductility of a Fe-28Mn-10Al-1C Steel, Metall. Mater. Trans. A, 2009, 40A, p 1520–1523.

    Article  CAS  Google Scholar 

  16. R.A. Howell and D.C. Van Aken, A Literature Review of Age Hardening Fe-Mn-Al-C Alloys, Iron Steel Technol., 2009, 6(4), p 193–212.

    CAS  Google Scholar 

  17. C. Castan, F. Montheillet and A. Perlade, Dynamic Recrystallization Mechanisms of an Fe–8 % Al Low Density Steel under Hot Rolling Conditions, Scr. Mater., 2013, 68(6), p 360–364.

    Article  CAS  Google Scholar 

  18. R. Rana, C. Liu and R.K. Ray, Low-Density Low-Carbon Fe–Al Ferritic Steels, Scr. Mater., 2013, 68(6), p 354–359.

    Article  CAS  Google Scholar 

  19. R.G. Baligidad and A. Radhakrishna, Effect of B, Zr, Ce and Nb Addition on Structure and Mechanical Properties of High Carbon Fe-10.5 wt% Al Alloy, J. Mater. Sci. Lett., 2002, 21(16), p 1231–1235.

    Article  CAS  Google Scholar 

  20. R.G. Baligidad and K.S. Prasad, Effect of Al and C on Structure and Mechanical Properties of Fe–Al–C Alloys, Mater. Sci. Technol., 2007, 23(1), p 38–44.

    Article  CAS  Google Scholar 

  21. R.G. Baligidad, U. Prakash and A.R. Krishna, On Elevated Temperature Stability of High Carbon Fe-Al Alloys, Mater. Sci. Eng. A, 1999, 265, p 301–305.

    Article  Google Scholar 

  22. S.Y. Han, S.Y. Shin, S. Lee, N.J. Kim, J.H. Kwak and K.G. Chin, Effect of Carbon Content on Cracking Phenomenon Occurring during Cold Rolling of Three Light-Weight Steel Plates, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2011, 42(1), p 138–146.

    Article  CAS  Google Scholar 

  23. S.S. Sohn, B. Lee, S. Lee and J. Kwak, Effects of Aluminum Content on Cracking Phenomenon Occurring during Cold Rolling of Three Ferrite-Based Lightweight Steel, Acta Mater., 2013, 61(15), p 5626–5635.

    Article  CAS  Google Scholar 

  24. S.S.U. Sohn, B. Lee, S. Lee and J. Kwak, Effect of Mn Addition on Microstructural Modification and Cracking Behavior of Ferritic Light-Weight Steels, Metall. Mater. Trans. A, 2014, 45, p 5469–5485.

    Article  CAS  Google Scholar 

  25. J. Seol, D. Raabe, P. Choi, H. Park, J. Kwak and C. Park, Direct Evidence for the Formation of Ordered Carbides in a Ferrite-Based Low-Density Fe–Mn–Al–C Alloy Studied by Transmission Electron Microscopy and Atom Probe Tomography, Scr. Mater., 2013, 68(6), p 348–353.

    Article  CAS  Google Scholar 

  26. D. Liu, H. Ding, M. Cai and D. Han, Hot Deformation Behavior and Processing Map of a Fe-11Mn-10Al-0.9C Duplex Low-Density Steel Susceptible to κ-Carbides, J. Mater. Eng. Perform., 2019, 28(8), p 5116–5126.

    Article  CAS  Google Scholar 

  27. M.S. Kim and Y.B. Kang, Development of Thermodynamic Database for High Mn-High Al Steels: Phase Equilibria in the Fe-Mn-Al-C System by Experiment and Thermodynamic Modeling, Calphad Comput. Coupling Phase Diagrams Thermochem., 2015, 51, p 89–103.

    Article  CAS  Google Scholar 

  28. K.W. Andrews, Empirical Formulae for the Calculation of Some Transformation Temperatures, J. Iron Steel Inst., 1965, 203, p 721–727.

    CAS  Google Scholar 

  29. R. Zhang, W. Zheng, X. Veys, G. Huyberechts, H. Springer and M. Selleby, Prediction of Martensite Start Temperature for Lightweight Fe-Mn-Al-C Steels, J. Phase Equilibria Diffus., 2018, 39(5), p 476–489.

    Article  CAS  Google Scholar 

  30. R.G. Baligidad and A. Radhakrishna, Processing of Fe-Al-C-Ce Alloys through Air Induction Melting with Flux Cover (AIMFC) and Electroslag Remelting (ESR), J. Mater. Sci., 2002, 7, p 5021–5028.

    Article  Google Scholar 

  31. J. Jeong, C. Lee, I. Park and Y. Lee, Isothermal Precipitation Behavior of κ-carbide in the Fe–9Mn–6Al–015C Lightweight Steel with a Multiphase Microstructure, J. Alloys Compd., 2013, 574, p 299–304.

    Article  CAS  Google Scholar 

  32. S.Y. Shin, H. Lee, S.Y. Han, C. Seo, K. Choi, S. Lee, N.J. Kim and J. Kwak, Correlation of Microstructure and Cracking Phenomenon Occurring during Hot Rolling of Lightweight Steel Plates, Metall. Mater. Trans. A, 2010, 41A, p 138–148.

    Article  CAS  Google Scholar 

  33. W.J. Lu and R.S. Qin, Influence of κ -Carbide Interface Structure on the Formability of Lightweight Steels, Mater. Des., 2016, 104, p 211–216.

    Article  CAS  Google Scholar 

  34. C. Zhao, R. Song, L. Zhang, F. Yang and T. Kang, Effect of Annealing Temperature on the Microstructure and Tensile Properties of Fe–10Mn–10Al–07C Low-Density Steel, JMADE, 2016, 91, p 348–360.

    CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by ER&IPR, DRDO, New Delhi. Dilatometry studies were carried out at IEHK, RWTH Aachen University, Germany when one of the authors (UP) was a guest of Prof. W. Bleck. The visit was supported by Alexander von Humboldt Foundation, Germany. Help of Dr. S. R. Meka in analyzing phase transformations is also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ujjwal Prakash.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rawat, P., Prakash, U. & Prasad, V.V.S. Phase Transformation and Hot Working Studies on High-Al Fe-Al-Mn-C Ferritic Low-Density Steels. J. of Materi Eng and Perform 30, 6297–6308 (2021). https://doi.org/10.1007/s11665-021-05857-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05857-3

Keywords

Navigation