Skip to main content
Log in

Microstructures and Impact Wear Behavior of Al-Alloyed High-Mn Austenitic Cast Steel After Aging Treatment

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The microstructural evolution and impact wear behavior of Al-alloyed ultra-high-Mn austenitic cast steel were investigated after different heat treatments, including quenching (Q) and quenching + aging (Q + A). Another ultra-high-Mn austenitic cast steel without Al was compared under the same experimental condition. After Q + A, Al addition contributed to the precipitation of κ-carbides which improves the yield strength and wear resistance of the austenite matrix. However, the mechanical properties and wear resistance of the Al-free steel were strongly deteriorated due to the precipitation of plate-like M3C-type carbides, as well as the worn surface of the Al-free steel had the feature of micro-scratches. After Q + A (2 h), the Al-alloyed steel obtained optimal wear resistance and the main wear feature was strain fatigue. But, excessive aging time (4 h) would lead to a large fragile peeling from the worn surface and the wear resistance was decreased. Also, the worn subsurface microstructures with different heat treatments were observed by transmission electron microscopy (TEM). These results show that the deformation microstructures of the Al-free steel contained stacking faults, dislocation tangle and deformation twins. The deformation character of Al-alloyed steel is dominated by planar glide, and with increase in the aging time, planar dislocation substructures gradually evolved, relating to dislocation pileups, Taylor lattices and micro-bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Bhattacharyya, A Friction and Wear Study of Hadfield Manganese Steel, Wear, 1966, 9(6), p 451–461. https://doi.org/10.1016/0043-1648(66)90136-0

    Article  Google Scholar 

  2. A.K. Srivastava and K. Das, Microstructural Characterization of Hadfield Austenitic Manganese Steel, J. Mater. Sci., 2008, 43(16), p 5654–5658. https://doi.org/10.1007/s10853-008-2759-y

    Article  Google Scholar 

  3. Y.H. Wen, H.B. Peng, H.T. Si, R.L. Xiong, and D. Raabe, A Novel High Manganese Austenitic Steel with Higher Work Hardening Capacity and Much Lower Impact Deformation Than Hadfield Manganese Steel, Mater. Des., 2014, 55, p 798–804. https://doi.org/10.1016/j.matdes.2013.09.057

    Article  Google Scholar 

  4. R. Xiong, H. Peng, S. Wang, H. Si, and Y. Wen, Effect of Stacking Fault Energy on Work Hardening Behaviors in Fe-Mn-Si-C High Manganese Steels by Varying Silicon and Carbon Contents, Mater. Des., 2015, 85, p 707–714. https://doi.org/10.1016/j.matdes.2015.07.072

    Article  Google Scholar 

  5. S. Allain, J.-P. Chateau, O. Bouaziz, S. Migot, and N. Guelton, Correlations Between the Calculated Stacking Fault Energy and the Plasticity Mechanisms in Fe-Mn-C Alloys, Mater. Sci. Eng. A, 2004, 387, p 158–162. https://doi.org/10.1016/j.msea.2004.01.059

    Article  Google Scholar 

  6. O.A. Zambrano, J. Valdés, Y. Aguilar, J.J. Coronado, S.A. Rodríguez, and R.E. Logé, Hot Deformation of a Fe-Mn-Al-C Steel Susceptible of κ-Carbide Precipitation, Mater. Sci. Eng. A, 2017, 689, p 269–285. https://doi.org/10.1016/j.msea.2017.02.060

    Article  Google Scholar 

  7. D.T. Pierce, J.A. Jiménez, J. Bentley, D. Raabe, C. Oskay, and J.E. Wittig, The Influence of Manganese Content on the Stacking Fault and Austenite/ε-Martensite Interfacial Energies in Fe-Mn-(Al-Si) Steels Investigated by Experiment and Theory, Acta Mater., 2014, 68, p 238–253. https://doi.org/10.1016/j.actamat.2014.01.001

    Article  Google Scholar 

  8. H. Idrissi, K. Renard, D. Schryvers, and P.J. Jacques, On the Relationship Between the Twin Internal Structure and the Work-Hardening Rate of TWIP Steels, Scr. Mater., 2010, 63(10), p 961–964. https://doi.org/10.1016/j.scriptamat.2010.07.016

    Article  Google Scholar 

  9. R. Song, C. Cai, S. Liu, Y. Feng, and Z. Pei, Stacking Fault Energy and Compression Deformation Behavior of Ultra-High Manganese Steel, Procedia Eng., 2017, 207, p 1809–1814. https://doi.org/10.1016/j.proeng.2017.10.943

    Article  Google Scholar 

  10. Y.N. Dastur and W.C. Leslie, Mechanism of Work Hardening in Hadfield Manganese Steel, Metall. Mater. Trans. A, 1981, 12(5), p 749–759. https://doi.org/10.1007/BF02648339

    Article  Google Scholar 

  11. J.D. Yoo and K.-T. Park, Micro-Band-Induced Plasticity in a High Mn-Al-C Light Steel, Mater. Sci. Eng. A, 2008, 496, p 417–424. https://doi.org/10.1016/j.msea.2008.05.042

    Article  Google Scholar 

  12. G. Frommeyer and U. Briix, Microstructures and Mechanical Properties of High-Strength Fe-Mn-Al-C Light-Weight TRIPLEX Steels, Steel Res. Int., 2006, 77, p 627–633. https://doi.org/10.1002/srin.200606440

    Article  Google Scholar 

  13. J.D. Yoo, S.W. Hwang, and K.-T. Park, Origin of Extended Tensile Ductility of a Fe-28Mn-10Al-1C Steel, Metall. Mater. Trans. A, 2009, 40, p 1520–1523. https://doi.org/10.1007/s11661-009-9862-9

    Article  Google Scholar 

  14. H. Ding, D. Han, J. Zhang, Z. Cai, Z. Wu, and M. Cai, Tensile Deformation Behavior Analysis of Low Density Fe-18Mn-10Al-xC Steels, Mater. Sci. Eng. A, 2016, 652, p 69–76. https://doi.org/10.1016/j.msea.2015.11.071

    Article  Google Scholar 

  15. O.A. Zambrano, A General Perspective of Fe-Mn-Al-C Steels, J. Mater. Sci., 2018, 53(20), p 14003–14062. https://doi.org/10.1007/s10853-018-2551-6

    Article  Google Scholar 

  16. D. Canadinc, H. Sehitoglu, H.J. Maier, and Y.I. Chumlyakov, Show More Strain Hardening Behavior of Aluminum Alloyed Hadfield Steel Single Crystals, Acta Mater., 2005, 53(6), p 1831–1842. https://doi.org/10.1016/j.actamat.2004.12.033

    Article  Google Scholar 

  17. M. Abbasi, S. Kheirandish, Y. Kharrazi, and J. Hejazi, The Fracture and Plastic Deformation of Aluminum Alloyed Hadfield Steels, Mater. Sci. Eng. A, 2009, 513, p 72–76. https://doi.org/10.1016/j.msea.2009.02.023

    Article  Google Scholar 

  18. O.A. Zambrano, Y. Aguilar, J. Valdés, S.A. Rodríguez, and J.J. Coronado, Effect of Normal Load on Abrasive Wear Resistance and Wear Micromechanisms in FeMnAlC Alloy and Other Austenitic Steels, Wear, 2016, 348, p 61–68. https://doi.org/10.1016/j.wear.2015.11.019

    Article  Google Scholar 

  19. Y. Feng, R. Song, Z. Pei, R. Song, and G. Dou, Effect of Aging Isothermal Time on the Microstructure and Room-Temperature Impact Toughness of Fe-24.8 Mn-7.3 Al-1.2 C Austenitic Steel with κ-Carbides Precipitation, Met. Mater. Int., 2018, 2018, p 1–12. https://doi.org/10.1007/s12540-018-0112-9

    Google Scholar 

  20. E. Welsch, D. Ponge, S.M. Hafez-Haghighat, S. Sandlöbes, P. Choi, M. Herbig, S. Zaefferer, and D. Raabe, Strain Hardening by Dynamic Slip Band Refinement in a High-Mn Lightweight Steel, Acta Mater., 2016, 116, p 188–199. https://doi.org/10.1016/j.actamat.2016.06.037

    Article  Google Scholar 

  21. D. Kuhlmann-Wilsdorf, Theory of Plastic Deformation: Properties of Low Energy Dislocation Structures, Mater. Sci. Eng. A, 1989, 113, p 1–41. https://doi.org/10.1016/0921-5093(89)90290-6

    Article  Google Scholar 

  22. B. Bay, N. Hansen, and D. Khulmann-Wilsdorf, Deformation Structures in Lightly Rolled Pure Aluminium, Mater. Sci. Eng. A, 1989, 113, p 385–397. https://doi.org/10.1016/0921-5093(89)90325-0

    Article  Google Scholar 

  23. I. Gutierrez-Urrutia and D. Raabe, Influence of Al Content and Precipitation State on the Mechanical Behavior of Austenitic High-Mn Low-Density Steels, Scr. Mater., 2013, 68(6), p 343–347. https://doi.org/10.1016/j.scriptamat.2012.08.038

    Article  Google Scholar 

  24. O.A. Zambrano, J. Valdés, L.A. Rodriguez, D. Reyes, E. Snoeck, S.A. Rodríguez, and J.J. Coronado, Elucidating the Role of κ-Carbides in FeMnAlC Alloys on Abrasion Wear, Tribol. Int., 2019, 135, p 421–431. https://doi.org/10.1016/j.triboint.2019.03.002

    Article  Google Scholar 

  25. K. Sato, M. Ichinose, Y. Hirotsu, and Y. Inoue, Effects of Deformation Induced Phase Transformation and Twinning on the Mechanical Properties of Austenitic Fe-Mn-Al Alloys, ISIJ Int., 1989, 29(10), p 868–877. https://doi.org/10.2355/isijinternational.29.868

    Article  Google Scholar 

  26. J.P. Hirth, Thermodynamics of Stacking Faults, Metall. Mater. Trans. B, 1970, 1(9), p 2367. https://doi.org/10.1007/BF03038365

    Google Scholar 

  27. T.S. Byun, On the Stress Dependence of Partial Dislocation Separation and Deformation Microstructure in Austenitic Stainless Steels, Acta Mater., 2003, 51(11), p 3063–3071. https://doi.org/10.1016/S1359-6454(03)00117-4

    Article  Google Scholar 

  28. S. Allain, J.-P. Chateau, and O. Bouaziz, A Physical Model of the Twinning-Induced Plasticity Effect in a High Manganese Austenitic Steel, Mater. Sci. Eng. A, 2004, 387, p 143–147. https://doi.org/10.1016/j.msea.2004.01.060

    Article  Google Scholar 

  29. T. Steffens, C. Schwink, A. Korner, and H.P. Karnthaler, Transmission Electron Microscopy Study of the Stacking-Fault Energy and Dislocation Structure in CuMn Alloys, Philos. Mag. A, 1987, 56, p 161–173. https://doi.org/10.1080/01418618708205159

    Article  Google Scholar 

  30. G. Saller, K. Spiradek-Hahn, C. Schen, and H. Clemens, Microstructural Evolution of Cr-Mn-N Austenitic Steels During Cold Work Hardening, Mater. Sci. Eng. A, 2006, 427, p 246–254. https://doi.org/10.1016/j.msea.2006.04.020

    Article  Google Scholar 

  31. K.-T. Park, K.G. Jin, S.H. Han, S.W. Hwang, K. Choi, and C.S. Lee, Stacking Fault Energy and Plastic Deformation of Fully Austenitic High Manganese Steels: Effect of Al Addition, Mater. Sci. Eng. A, 2010, 527(16–17), p 3651–3661. https://doi.org/10.1016/j.msea.2010.02.058

    Article  Google Scholar 

  32. J.D. Yoo, S.W. Hwang, and K.-T. Park, Factors Influencing the Tensile Behavior of a Fe-28Mn-9Al-0.8 C Steel, Mater. Sci. Eng. A, 2009, 508(1–2), p 234–240. https://doi.org/10.1016/j.msea.2008.12.055

    Article  Google Scholar 

  33. M.J. Yao, E. Welsch, D. Ponge, S.M.H. Haghighat, S. Sandlöbes, P. Choi, M. Herbig, I. Bleskov, T. Hickel, M. Lipinska-Chwalek, P. Shanthraj, C. Scheu, S. Zaefferer, B. Gault, and D. Raabe, Strengthening and Strain Hardening Mechanisms in a Precipitation-Hardened High-Mn Lightweight Steel, Acta Mater., 2017, 140, p 258–273. https://doi.org/10.1016/j.actamat.2017.08.049

    Article  Google Scholar 

  34. C. Haase, C. Zehnder, T. Ingendahl, A. Bikar, F. Tang, B. Hallstedt, W. Hu, W. Bleck, and D.A. Molodov, On the Deformation Behavior of κ-Carbide-Free and κ-Carbide-Containing High-Mn Light-Weight Steel, Acta Mater., 2017, 122, p 332–343. https://doi.org/10.1016/j.actamat.2016.10.006

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renbo Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Song, R., Peng, S. et al. Microstructures and Impact Wear Behavior of Al-Alloyed High-Mn Austenitic Cast Steel After Aging Treatment. J. of Materi Eng and Perform 28, 4845–4855 (2019). https://doi.org/10.1007/s11665-019-04265-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04265-y

Keywords

Navigation