Skip to main content
Log in

Relative Performance of Additively Manufactured and Cast Aluminum Alloys

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Laser power bed fusion (LPBF) enables the possibility to improve the performance of critical automotive components by leveraging new design and manufacturing potentials. While the LPBF approach taps into numerous design freedom advantages, the finely focused energy input source, layer-wise thermal cycling, and rapid cooling rates also impact the properties of a given material, thereby affecting performance characteristics of the end-product. The microstructure and mechanical properties of LPBF components must hence be thoroughly compared with the traditional processing technique used for a given application to evaluate its feasibility. In the context of this work, AlSi10Mg processed via LPBF is compared to a high-pressure die-cast aluminum alloy to compare the performance toward technology adoption in manufacturing automotive transmissions. It was found that, with proper process control, LPBF parts can achieve better or comparable density of 99.84–99.95% (cast: 99.15–99.97% cast), similar surface topography, comparable hardness of 54.3–69.3 HRB (cast: 72.8–81.5 HRB), comparable specific wear rates of 3.92*10−4 to 6.04*10−4 mm3N−1m−1 (cast: 2.50*10−4 to 2.55*10−4 mm3N−1m−1), and an overall better corrosion resistance compared to the cast pump housing. The findings show that, with an appropriate selection of process parameters, it is feasible to pursue and possibly enhance the performance of AlSi10Mg for fluid power applications using LPBF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. F. Kim, H. Villarraga-Gómez, S. Moylan, Inspection of Embedded Internal Features in Additive Manufactured Metal Parts Using Metrological x-ray Computed Tomography, in: American Society Precision Engineering 2016 Summer Topical Meeting, 2016: pp. 191–195

  2. J. Mingear, B. Zhang, D. Hartl and A. Elwany, Effect of Process Parameters and Electropolishing on the Surface Roughness of Interior Channels in Additively Manufactured Nickel-Titanium Shape Memory Alloy Actuators, Addit. Manuf., 2019, 27, p 565–575. https://doi.org/10.1016/j.addma.2019.03.027

    Article  CAS  Google Scholar 

  3. S.N. Reddy K., V. Maranan, T.W. Simpson, T. Palmer, C.J. Dickman, Application of Topology Optimization and Design for Additive Manufacturing Guidelines on an Automotive Component, in: vol. 2A 42nd Des. Automation Conferefnce, American Society of Mechanical Engineers, Charlotte, North Carolina, USA, 2016. https://doi.org/10.1115/DETC2016-59719

  4. J. Parthasarathy, B. Starly and S. Raman, A Design for the Additive Manufacture of Functionally Graded Porous Structures with Tailored Mechanical Properties for Biomedical Applications, J. Manuf. Process., 2011, 13, p 160–170. https://doi.org/10.1016/j.jmapro.2011.01.004

    Article  Google Scholar 

  5. C. Yan, L. Hao, A. Hussein, S.L. Bubb, P. Young and D. Raymont, Evaluation of Light-Weight AlSi10Mg Periodic Cellular Lattice Structures Fabricated via Direct Metal Laser Sintering, J. Mater. Process. Technol., 2014, 214, p 856–864. https://doi.org/10.1016/j.jmatprotec.2013.12.004

    Article  CAS  Google Scholar 

  6. F. Calignano, M. Lorusso, J. Pakkanen, F. Trevisan, E.P. Ambrosio, D. Manfredi and P. Fino, Investigation of Accuracy and Dimensional Limits of Part Produced in Aluminum Alloy by Selective Laser Melting, Int. J. Adv. Manuf. Technol., 2017, 88, p 451–458. https://doi.org/10.1007/s00170-016-8788-9

    Article  Google Scholar 

  7. N.T. Aboulkhair, I. Maskery, C. Tuck, I. Ashcroft and N.M. Everitt, The Microstructure and Mechanical Properties of Selectively Laser Melted AlSi10Mg: The Effect of a Conventional T6-like Heat Treatment, Mater. Sci. Eng. A., 2016, 667, p 139–146. https://doi.org/10.1016/j.msea.2016.04.092

    Article  CAS  Google Scholar 

  8. P. Wei, Z. Wei, Z. Chen, J. Du, Y. He, J. Li and Y. Zhou, The AlSi10Mg Samples Produced by Selective Laser Melting: Single Track, Densification, Microstructure and Mechanical Behavior, Appl. Surf. Sci., 2017, 408, p 38–50. https://doi.org/10.1016/j.apsusc.2017.02.215

    Article  CAS  Google Scholar 

  9. J. Wang, Y. Liu, C.D. Rabadia, S.-X. Liang, T.B. Sercombe and L.-C. Zhang, Microstructural Homogeneity and Mechanical Behavior of a Selective Laser Melted Ti-35Nb Alloy Produced from an Elemental Powder Mixture, J. Mater. Sci. Technol., 2021, 61, p 221–233. https://doi.org/10.1016/j.jmst.2020.05.052

    Article  Google Scholar 

  10. L.C. Zhang, D. Klemm, J. Eckert, Y.L. Hao and T.B. Sercombe, Manufacture by Selective Laser Melting and Mechanical Behavior of a Biomedical Ti-24Nb-4Zr-8Sn Alloy, Scr. Mater., 2011, 65, p 21–24. https://doi.org/10.1016/j.scriptamat.2011.03.024

    Article  CAS  Google Scholar 

  11. L.-Y. Chen, Y.-W. Cui and L.-C. Zhang, Recent Development in Beta Titanium Alloys for Biomedical Applications, Metals., 2020, 10, p 1139. https://doi.org/10.3390/met10091139

    Article  Google Scholar 

  12. S.L. Sing, J. An, W.Y. Yeong and F.E. Wiria, Laser and Electron-Beam Powder-Bed Additive Manufacturing of Metallic Implants: A Review on Processes, Materials and Designs, J. Orthop. Res., 2016, 34, p 369–385. https://doi.org/10.1002/jor.23075

    Article  CAS  Google Scholar 

  13. B. Konieczny, A. Szczesio-Wlodarczyk, J. Sokolowski and K. Bociong, Challenges of Co-Cr Alloy Additive Manufacturing Methods in Dentistry—The Current State of Knowledge (Systematic Review), Materials, 2020, 13, p 3524. https://doi.org/10.3390/ma13163524

    Article  CAS  Google Scholar 

  14. S. Chen, Y. Tong and P.K. Liaw, Additive Manufacturing of High-entropy Alloys: A Review, Entropy., 2018, 20, p 937. https://doi.org/10.3390/e20120937

    Article  CAS  Google Scholar 

  15. J. Benatmane, Environmental Report: Delphi Pump Housing, Prepared by Econolyst for the Atkins Project, London, UK, 2010.

    Google Scholar 

  16. H. Qin, V. Fallah, Q. Dong, M. Brochu, M.R. Daymond and M. Gallerneault, Solidification Pattern, Microstructure and Texture Development in Laser Powder Bed Fusion (LPBF) of Al10SiMg Alloy, Mater. Charact., 2018, 145, p 29–38. https://doi.org/10.1016/j.matchar.2018.08.025

    Article  CAS  Google Scholar 

  17. F.C. Campbell, Elements of Metallurgy and Engineering Alloys, ASM International, Novelty, 2008.

    Book  Google Scholar 

  18. Aluminum (AlSi10Mg), Proto3000. (n.d.). https://proto3000.com/materials/dmls-aluminum-2/. Accessed 2 Oct 2019

  19. J.R. Davis, Aluminum and Aluminum Alloys, in: Alloy Understand Basics, ASM International, 2001: pp. 351–416. https://materialsdata.nist.gov/bitstream/handle/11115/173/Aluminum%20and%20Aluminum%20Alloys%20Davis.pdf?sequence=3&isAllowed=y. Accessed 2 Oct 2019

  20. F. Trevisan, F. Calignano, M. Lorusso, J. Pakkanen, A. Aversa, E. Ambrosio, M. Lombardi, P. Fino and D. Manfredi, On the Selective Laser Melting (SLM) of the AlSi10Mg Alloy: Process Microstructure, and Mechanical Properties, Materials., 2017, 10, p 76. https://doi.org/10.3390/ma10010076

    Article  CAS  Google Scholar 

  21. H. Asgari, C. Baxter, K. Hosseinkhani and M. Mohammadi, On Microstructure and Mechanical Properties of Additively Manufactured AlSi10Mg_200C Using Recycled Powder, Mater. Sci. Eng. A., 2017, 707, p 148–158. https://doi.org/10.1016/j.msea.2017.09.041

    Article  CAS  Google Scholar 

  22. L. Thijs, K. Kempen, J.-P. Kruth and J. Van Humbeeck, Fine-Structured Aluminium Products with Controllable Texture by Selective Laser Melting of Pre-alloyed AlSi10Mg Powder, Acta Mater., 2013, 61, p 1809–1819. https://doi.org/10.1016/j.actamat.2012.11.052

    Article  CAS  Google Scholar 

  23. I. Rosenthal, A. Stern and N. Frage, Microstructure and Mechanical Properties of AlSi10Mg Parts Produced by the Laser Beam Additive Manufacturing (AM) Technology, Metallogr. Microstruct. Anal., 2014, 3, p 448–453. https://doi.org/10.1007/s13632-014-0168-y

    Article  CAS  Google Scholar 

  24. N.T. Aboulkhair, N.M. Everitt, I. Ashcroft and C. Tuck, Reducing Porosity in AlSi10Mg Parts Processed by Selective Laser Melting, Addit. Manuf., 2014, 1–4, p 77–86. https://doi.org/10.1016/j.addma.2014.08.001

    Article  Google Scholar 

  25. D. Buchbinder, H. Schleifenbaum, S. Heidrich, W. Meiners and J. Bültmann, High Power Selective Laser Melting (HP SLM) of Aluminum Parts, Phys. Procedia, 2011, 12, p 271–278. https://doi.org/10.1016/j.phpro.2011.03.035

    Article  CAS  Google Scholar 

  26. K. Kempen, L. Thijs, J. Van Humbeeck and J.-P. Kruth, Processing AlSi10Mg by Selective Laser Melting: Parameter Optimisation and Material Characterisation, Mater. Sci. Technol., 2015, 31, p 917–923. https://doi.org/10.1179/1743284714Y.0000000702

    Article  CAS  Google Scholar 

  27. M. Krishnan, E. Atzeni, R. Canali, F. Calignano, D. Manfredi, E.P. Ambrosio and L. Iuliano, On the Effect Of Process Parameters on Properties of AlSi10Mg Parts Produced by DMLS, Rapid Prototyp. J., 2014, 20, p 449–458. https://doi.org/10.1108/RPJ-03-2013-0028

    Article  Google Scholar 

  28. Y. Li and D. Gu, Parametric Analysis of Thermal Behavior During Selective Laser Melting Additive Manufacturing of Aluminum Alloy Powder, Mater. Des., 2014, 63, p 856–867. https://doi.org/10.1016/j.matdes.2014.07.006

    Article  CAS  Google Scholar 

  29. N. Read, W. Wang, K. Essa and M.M. Attallah, Selective Laser Melting of AlSi10Mg Alloy: Process Optimisation and Mechanical Properties Development, Mater. Des., 2015, 1980–2015(65), p 417–424. https://doi.org/10.1016/j.matdes.2014.09.044

    Article  CAS  Google Scholar 

  30. E.O. Olakanmi, Selective Laser Sintering/Melting (SLS/SLM) of Pure Al, Al-Mg, and Al-Si Powders: Effect of Processing Conditions and Powder Properties, J. Mater. Process. Technol., 2013, 213, p 1387–1405. https://doi.org/10.1016/j.jmatprotec.2013.03.009

    Article  CAS  Google Scholar 

  31. M. Tang and P.C. Pistorius, Oxides, Porosity and Fatigue Performance of AlSi10Mg Parts Produced by Selective Laser Melting, Int. J. Fatigue, 2017, 94, p 192–201. https://doi.org/10.1016/j.ijfatigue.2016.06.002

    Article  CAS  Google Scholar 

  32. L. Wang, S. Wang and J. Wu, Experimental Investigation on Densification Behavior and Surface Roughness of AlSi10Mg Powders Produced by Selective Laser Melting, Opt. Laser Technol., 2017, 96, p 88–96. https://doi.org/10.1016/j.optlastec.2017.05.006

    Article  CAS  Google Scholar 

  33. D. Manfredi, F. Calignano, M. Krishnan, R. Canali, E. Ambrosio and E. Atzeni, From Powders to Dense Metal Parts: Characterization of a Commercial AlSiMg Alloy Processed Through Direct Metal Laser Sintering, Materials, 2013, 6, p 856–869. https://doi.org/10.3390/ma6030856

    Article  CAS  Google Scholar 

  34. F. Calignano, D. Manfredi, E.P. Ambrosio, L. Iuliano and P. Fino, Influence of Process Parameters on Surface Roughness of Aluminum Parts Produced by DMLS, Int. J. Adv. Manuf. Technol., 2013, 67, p 2743–2751. https://doi.org/10.1007/s00170-012-4688-9

    Article  Google Scholar 

  35. A. Boschetto, L. Bottini and F. Veniali, Roughness Modeling of AlSi10Mg Parts Fabricated by Selective Laser Melting, J. Mater. Process. Technol., 2017, 241, p 154–163. https://doi.org/10.1016/j.jmatprotec.2016.11.013

    Article  CAS  Google Scholar 

  36. K. Kempen, L. Thijs, M. Badrossamay, W. Verheecke, J.-P. Kruth, Process Optimization and Microstructural Analysis for Selective Laser Melting of AlSi10Mg, in: Austin, TX, 2011

  37. W.H. Kan, Y. Nadot, M. Foley, L. Ridosz, G. Proust and J.M. Cairney, Factors that Affect the Properties of Additively-manufactured AlSi10Mg: Porosity Versus Microstructure, Addit. Manuf., 2019, 29, p 100805. https://doi.org/10.1016/j.addma.2019.100805

    Article  CAS  Google Scholar 

  38. B. Sagbas, Post-processing Effects on Surface Properties of Direct Metal Laser Sintered AlSi10Mg Parts, Met. Mater. Int., 2019 https://doi.org/10.1007/s12540-019-00375-3

    Article  Google Scholar 

  39. N.T. Aboulkhair, I. Maskery, C. Tuck, I. Ashcroft and N.M. Everitt, On the Formation of AlSi10Mg Single Tracks and Layers in Selective Laser Melting: Microstructure and Nano-Mechanical Properties, J. Mater. Process. Technol., 2016, 230, p 88–98. https://doi.org/10.1016/j.jmatprotec.2015.11.016

    Article  CAS  Google Scholar 

  40. Y.J. Liu, Z. Liu, Y. Jiang, G.W. Wang, Y. Yang and L.C. Zhang, Gradient in Microstructure and Mechanical Property of Selective Laser Melted AlSi10Mg, J. Alloys Compd., 2018, 735, p 1414–1421. https://doi.org/10.1016/j.jallcom.2017.11.020

    Article  CAS  Google Scholar 

  41. N.T. Aboulkhair, M. Simonelli, L. Parry, I. Ashcroft, C. Tuck and R. Hague, 3D Printing of Aluminium Alloys: Additive Manufacturing of Aluminium Alloys Using Selective Laser Melting, Prog. Mater. Sci., 2019, 106, p 100578. https://doi.org/10.1016/j.pmatsci.2019.100578

    Article  CAS  Google Scholar 

  42. N. Kang, P. Coddet, H. Liao, T. Baur and C. Coddet, Wear Behavior and Microstructure of Hypereutectic Al-Si Alloys Prepared by Selective Laser Melting, Appl. Surf. Sci., 2016, 378, p 142–149. https://doi.org/10.1016/j.apsusc.2016.03.221

    Article  CAS  Google Scholar 

  43. N. Kang, P. Coddet, C. Chen, Y. Wang, H. Liao and C. Coddet, Microstructure and Wear Behavior of in-situ Hypereutectic Al-high Si Alloys Produced by Selective Laser Melting, Mater. Des., 2016, 99, p 120–126. https://doi.org/10.1016/j.matdes.2016.03.053

    Article  CAS  Google Scholar 

  44. K.G. Prashanth, B. Debalina, Z. Wang, P.F. Gostin, A. Gebert, M. Calin, U. Kühn, M. Kamaraj, S. Scudino and J. Eckert, Tribological and Corrosion Properties of Al-12Si Produced by Selective Laser Melting, J. Mater. Res., 2014, 29, p 2044–2054. https://doi.org/10.1557/jmr.2014.133

    Article  CAS  Google Scholar 

  45. Md.A. Islam and Z.N. Farhat, Effect of Porosity on Dry Sliding Wear of Al-Si Alloys, Tribol. Int., 2011, 44, p 498–504. https://doi.org/10.1016/j.triboint.2010.12.007

    Article  CAS  Google Scholar 

  46. Y. Liu, R. Asthana and P. Rohatgi, A Map for Wear Mechanisms in Aluminium Alloys, J. Mater. Sci., 1991, 26, p 99–102. https://doi.org/10.1007/BF00576038

    Article  CAS  Google Scholar 

  47. A. Leon, A. Shirizly and E. Aghion, Corrosion Behavior of AlSi10Mg Alloy Produced by Additive Manufacturing (AM) vs. Its Counterpart Gravity Cast alloy, Metals, 2016, 6, p 148. https://doi.org/10.3390/met6070148

    Article  Google Scholar 

  48. A. Leon and E. Aghion, Effect of Surface Roughness on Corrosion Fatigue Performance of AlSi10Mg Alloy Produced by Selective Laser Melting (SLM), Mater. Charact., 2017, 131, p 188–194. https://doi.org/10.1016/j.matchar.2017.06.029

    Article  CAS  Google Scholar 

  49. M. Cabrini, S. Lorenzi, T. Pastore, S. Pellegrini, M. Pavese, P. Fino, E.P. Ambrosio, F. Calignano and D. Manfredi, Corrosion Resistance of Direct Metal Laser Sintering AlSiMg Alloy, Surf. Interface Anal., 2016, 48, p 818–826. https://doi.org/10.1002/sia.5981

    Article  CAS  Google Scholar 

  50. M. Cabrini, S. Lorenzi, T. Pastore, S. Pellegrini, E.P. Ambrosio, F. Calignano, D. Manfredi, M. Pavese and P. Fino, Effect of Heat Treatment on Corrosion Resistance of DMLS AlSi10Mg Alloy, Electrochim. Acta, 2016, 206, p 346–355. https://doi.org/10.1016/j.electacta.2016.04.157

    Article  CAS  Google Scholar 

  51. M. Cabrini, S. Lorenzi, T. Pastore, S. Pellegrini, D. Manfredi, P. Fino, S. Biamino and C. Badini, Evaluation of Corrosion Resistance of Al-10Si-Mg Alloy Obtained by Means of Direct Metal Laser Sintering, J. Mater. Process. Technol., 2016, 231, p 326–335. https://doi.org/10.1016/j.jmatprotec.2015.12.033

    Article  CAS  Google Scholar 

  52. M. Cabrini, S. Lorenzi, T. Pastore, C. Testa, D. Manfredi, M. Lorusso, F. Calignano, M. Pavese and F. Andreatta, Corrosion Behavior of AlSi10Mg Alloy Produced by Laser Powder Bed Fusion Under Chloride Exposure, Corros. Sci., 2019 https://doi.org/10.1016/j.corsci.2019.03.010

    Article  Google Scholar 

  53. T. Duchardt, G. Andersohn and M. Oechsner, Corrosion Behavior of EN AC-AlSi10Mg in Boiling Coolant with Various Average Flow Temperatures, Mater. Corros., 2015, 66, p 931–939. https://doi.org/10.1002/maco.201407724

    Article  CAS  Google Scholar 

  54. L. Girelli, M. Tocci, L. Montesano, M. Gelfi and A. Pola, Investigation of Cavitation Erosion Resistance of AlSi10Mg Alloy for Additive Manufacturing, Wear, 2018, 402–403, p 124–136. https://doi.org/10.1016/j.wear.2018.02.018

    Article  CAS  Google Scholar 

  55. J. Zou, Y. Zhu, M. Pan, T. Xie, X. Chen and H. Yang, A study on Cavitation Erosion Behavior of AlSi10Mg Fabricated by Selective Laser Melting (SLM), Wear, 2017, 376–377, p 496–506. https://doi.org/10.1016/j.wear.2016.11.031

    Article  CAS  Google Scholar 

  56. Y. Zhu, J. Zou, W.L. Zhao, X.B. Chen and H.Y. Yang, A Study on Surface Topography in Cavitation Erosion Tests of AlSi10Mg, Tribol. Int., 2016, 102, p 419–428. https://doi.org/10.1016/j.triboint.2016.06.007

    Article  CAS  Google Scholar 

  57. Renishaw PLC., AlSi10Mg-0403 400W Material Data Sheet, (2015). https://www.renishaw.com/media/pdf/en/0c48b4800c17480393f17ceaacb4ecdb.pdf

  58. L. Brock Laser Powder Bed Fusion of AlSi10Mg for Fabrication of Fluid Power Components, 2020. https://uwspace.uwaterloo.ca/handle/10012/15412. Accessed 29 Jan 2020

  59. Z. Chen, X. Wu, D. Tomus and C.H.J. Davies, Surface Roughness of Selective Laser Melted Ti-6Al-4V Alloy Components, Addit. Manuf., 2018, 21, p 91–103. https://doi.org/10.1016/j.addma.2018.02.009

    Article  CAS  Google Scholar 

  60. S. Patel and M. Vlasea, Melting Modes in Laser Powder Bed Fusion, Materialia., 2020, 9, p 100591. https://doi.org/10.1016/j.mtla.2020.100591

    Article  CAS  Google Scholar 

  61. T. Mukherjee, H.L. Wei, A. De and T. DebRoy, Heat and Fluid Flow in Additive Manufacturing—Part II: Powder Bed Fusion of Stainless Steel, and Titanium, Nickel and Aluminum Base Alloys, Comput. Mater. Sci., 2018, 150, p 369–380. https://doi.org/10.1016/j.commatsci.2018.04.027

    Article  CAS  Google Scholar 

  62. P. Marcus, V. Maurice and H.-H. Strehblow, Localized Corrosion (pitting): A Model of Passivity Breakdown Including the Role of the Oxide Layer Nanostructure, Corros. Sci., 2008, 50, p 2698–2704. https://doi.org/10.1016/j.corsci.2008.06.047

    Article  CAS  Google Scholar 

  63. C. Yan, L. Hao, A. Hussein, P. Young, J. Huang and W. Zhu, Microstructure and mechanical properties of aluminium alloy cellular lattice structures manufactured by direct metal laser sintering, Mater. Sci. Eng. A., 2015, 628, p 238–246. https://doi.org/10.1016/j.msea.2015.01.063

    Article  CAS  Google Scholar 

  64. R. Hague, S. Mansour and N. Saleh, Material and Design Considerations for Rapid Manufacturing, Int. J. Prod. Res., 2004, 42, p 4691–4708. https://doi.org/10.1080/00207840410001733940

    Article  Google Scholar 

  65. C. Weingarten, D. Buchbinder, N. Pirch, W. Meiners, K. Wissenbach and R. Poprawe, Formation and Reduction of Hydrogen Porosity During Selective Laser Melting of AlSi10Mg, J. Mater. Process. Technol., 2015, 221, p 112–120. https://doi.org/10.1016/j.jmatprotec.2015.02.013

    Article  CAS  Google Scholar 

  66. S.M.H. Hojjatzadeh, N.D. Parab, Q. Guo, M. Qu, L. Xiong, C. Zhao, L.I. Escano, K. Fezzaa, W. Everhart, T. Sun and L. Chen, Direct Observation of Pore Formation Mechanisms During LPBF Additive Manufacturing Process and High Energy Density Laser Welding, Int. J. Mach. Tools Manuf., 2020, 153, p 103555. https://doi.org/10.1016/j.ijmachtools.2020.103555

    Article  Google Scholar 

  67. N.P. Calta, A.A. Martin, J.A. Hammons, M.H. Nielsen, T.T. Roehling, K. Fezzaa, M.J. Matthews, J.R. Jeffries, T.M. Willey and J.R.I. Lee, Pressure Dependence of the Laser-Metal Interaction Under Laser Powder Bed Fusion Conditions Probed by In situ X-ray Imaging, Addit. Manuf., 2020, 32, p 101084. https://doi.org/10.1016/j.addma.2020.101084

    Article  CAS  Google Scholar 

  68. M. Matthews, J. Trapp, G. Guss and A. Rubenchik, Direct Measurements of Laser Absorptivity During Metal Melt Pool Formation Associated with Powder Bed Fusion Additive Manufacturing Processes, J. Laser Appl., 2018, 30, p 032302. https://doi.org/10.2351/1.5040636

    Article  CAS  Google Scholar 

  69. J. Trapp, A.M. Rubenchik, G. Guss and M.J. Matthews, In situ Absorptivity Measurements of Metallic Powders During Laser Powder-Bed Fusion Additive Manufacturing, Appl. Mater. Today., 2017, 9, p 341–349. https://doi.org/10.1016/j.apmt.2017.08.006

    Article  Google Scholar 

  70. C. Zhao, K. Fezzaa, R.W. Cunningham, H. Wen, F. Carlo, L. Chen, A.D. Rollett and T. Sun, Real-time Monitoring of Laser Powder Bed Fusion Process Using High-Speed X-ray Imaging and Diffraction, Sci. Rep., 2017, 7, p 3602. https://doi.org/10.1038/s41598-017-03761-2

    Article  CAS  Google Scholar 

  71. S.M.H. Hojjatzadeh, N.D. Parab, W. Yan, Q. Guo, L. Xiong, C. Zhao, M. Qu, L.I. Escano, X. Xiao, K. Fezzaa, W. Everhart, T. Sun and L. Chen, Pore Elimination Mechanisms During 3D Printing of Metals, Nat. Commun., 2019, 10, p 1–8. https://doi.org/10.1038/s41467-019-10973-9

    Article  CAS  Google Scholar 

  72. H. Nakamura, Y. Kawahito, K. Nishimoto and S. Katayama, Elucidation of Melt Flows and Spatter Formation Mechanisms During High Power Laser Welding of Pure Titanium, J. Laser Appl., 2015, 27, p 032012. https://doi.org/10.2351/1.4922383

    Article  CAS  Google Scholar 

  73. L. Johnson, M. Mahmoudi, B. Zhang, R. Seede, X. Huang, J.T. Maier, H.J. Maier, I. Karaman, A. Elwany and R. Arróyave, Assessing Printability Maps in Additive Manufacturing of Metal Alloys, Acta Mater., 2019, 176, p 199–210. https://doi.org/10.1016/j.actamat.2019.07.005

    Article  CAS  Google Scholar 

  74. M.J. Matthews, G. Guss, S.A. Khairallah, A.M. Rubenchik, P.J. Depond and W.E. King, Denudation of Metal Powder Layers in Laser Powder Bed Fusion Processes, Acta Mater., 2016, 114, p 33–42. https://doi.org/10.1016/j.actamat.2016.05.017

    Article  CAS  Google Scholar 

  75. A.A. Martin, N.P. Calta, S.A. Khairallah, J. Wang, P.J. Depond, A.Y. Fong, V. Thampy, G.M. Guss, A.M. Kiss, K.H. Stone, C.J. Tassone, J.N. Weker, M.F. Toney, T. van Buuren and M.J. Matthews, Dynamics of Pore Formation During Laser Powder Bed Fusion Additive Manufacturing, Nat. Commun., 2019, 10, p 1987. https://doi.org/10.1038/s41467-019-10009-2

    Article  CAS  Google Scholar 

  76. K. Mumtaz and N. Hopkinson, Top Surface and Side Roughness of Inconel 625 Parts Processed Using Selective Laser Melting, Rapid Prototyp. J., 2009 https://doi.org/10.1108/13552540910943397

    Article  Google Scholar 

  77. J.S. Zuback and T. DebRoy, The Hardness of Additively Manufactured Alloys, Materials, 2018, 11, p 2070. https://doi.org/10.3390/ma11112070

    Article  CAS  Google Scholar 

  78. W. Li, S. Li, J. Liu, A. Zhang, Y. Zhou, Q. Wei, C. Yan and Y. Shi, Effect of Heat Treatment on AlSi10Mg Alloy Fabricated by Selective Laser Melting: Microstructure Evolution, Mechanical Properties and Fracture Mechanism, Mater. Sci. Eng. A., 2016, 663, p 116–125. https://doi.org/10.1016/j.msea.2016.03.088

    Article  CAS  Google Scholar 

  79. N.T. Aboulkhair, C. Tuck, I. Ashcroft, I. Maskery and N.M. Everitt, On the Precipitation Hardening of Selective Laser Melted AlSi10Mg, Metall. Mater. Trans. A., 2015, 46, p 3337–3341. https://doi.org/10.1007/s11661-015-2980-7

    Article  CAS  Google Scholar 

  80. A.J. López, P. Rodrigo, B. Torres and J. Rams, Dry Sliding Wear Behaviour of ZE41A Magnesium Alloy, Wear, 2011, 271, p 2836–2844. https://doi.org/10.1016/j.wear.2011.05.043

    Article  CAS  Google Scholar 

  81. F.A. Davis and T.S. Eyre, The Effect of Silicon Content and Morphology on the Wear of Aluminium-Silicon Alloys Under Dry and Lubricated Sliding Conditions, Tribol. Int., 1994, 27, p 171–181. https://doi.org/10.1016/0301-679X(94)90042-6

    Article  CAS  Google Scholar 

  82. G. Rajaram, S. Kumaran and T.S. Rao, High Temperature Tensile and Wear Behaviour of Aluminum Silicon Alloy, Mater. Sci. Eng. A., 2010, 528, p 247–253. https://doi.org/10.1016/j.msea.2010.09.020

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors appreciate the support from the Federal Economic Development Agency (FedDev) for Southern Ontario grant #104809, the collaboration with our industry partner Advanced Test and Automation (Milton, ON, Canada), and the Ontario Advanced Manufacturing Consortium (AMC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihaela Vlasea.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brock, L., Ogunsanya, I., Asgari, H. et al. Relative Performance of Additively Manufactured and Cast Aluminum Alloys. J. of Materi Eng and Perform 30, 760–782 (2021). https://doi.org/10.1007/s11665-020-05403-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05403-7

Keywords

Navigation