Skip to main content
Log in

Hardness, Adhesion, and Wear Performance of Duplex Treatment Coatings of Nitride/TiAlZrN with Different Zr Target Currents

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The surface treatment, which includes first a thermal diffusion process, such as nitriding and then a physical vapor deposition coating process as the working layer, is called duplex treatment in the literature. In this study, the effects of the duplex treatment on the hardness, adhesion, and wear performance of TiAlZrN coatings on the hardened AISI H13 steel produced using the closed field unbalanced magnetron sputtering method with variable Zr target current (2 A, 3 A, and 5 A) were investigated. Within the scope of these investigations, scanning electron microscope, x-ray diffracrometer, optical microscope, optical profilometer, energy-dispersive spectrometer, micro- and nano-hardness, scratch, and wear tests were used. In micro- and nano-hardness tests, it was determined that the hardness of the substrate increased significantly (approximately 400%) owing to the duplex treatment. In addition, with the increase in the Zr target current, it was observed that the hardness of the coatings was in an increasing trend. Adhesion strength increased with the enhancement of both the hardness of the substrate and the coatings. It was beheld that the adhesion strength of the coatings increased with the duplex treatment. Besides, the coating produced using the highest Zr target current reached maximum adhesion strength of 79 N in relation to superior hardness. Wear performance of the samples was determined using a ball-on-disk tribometer. As a result of wear tests, TiAlZrN coatings with duplex treatment were observed to notably improve the wear performance of the substrate material by 95 times. The effects of Zr target current on the wear performance of the coatings were similar to those of hardness and adhesion strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. R. Rodriguez-Baracaldo, J. Benito, E.S. Puchi-Cabrera, and M.H. Staia, High Temperature Wear Resistance of (TiAl)N PVD Coating on Untreated and Gas Nitrided AISI, H13 Steel With Different Heat Treatments, Wear, 2007, 262(3–4), p 380–389. https://doi.org/10.1016/j.wear.2006.06.010

    Article  CAS  Google Scholar 

  2. H. Zhou, Q. Guo, and P. Lin, Influence of H13 Steel Unit on Wear Behavior of Vermicular Cast Iron, Appl. Surf. Sci., 2008, 255(5), p 3394–3399. https://doi.org/10.1016/j.apsusc.2008.09.065

    Article  CAS  Google Scholar 

  3. G. Telasang, J. Dutta Majumdar, G. Padmanabham, and I. Manna, Wear and Corrosion Behavior of LAser Surface Engineered AISI, H13 Hot Working Tool Steel, Surf. Coat. Technol., 2015, 261, p 69–78. https://doi.org/10.1016/j.surfcoat.2014.11.058

    Article  CAS  Google Scholar 

  4. P. Panjan, P. Cvathe, M. Cekada, B. Navinsek, and I. Urankar, PVD CrN Coating For Protection of Extrusion Dies, Vacuum, 2001, 61(2–4), p 241–244. https://doi.org/10.1016/S0042-207X(01)00113-0

    Article  CAS  Google Scholar 

  5. K. Das, J. Alphonsa, M. Glosh, J. Ghanshyam, R. Rane, and S. Mukherjee, Influence of Pretreatment on Surface Behavior of Duplex Plasma Treated AISI, H13 Tool Steel, Surf. Interface, 2017, 8, p 206–213. https://doi.org/10.1016/j.surfin.2017.06.009

    Article  CAS  Google Scholar 

  6. B. Gates, Road Ahead, Penguin Books, London, 1996

    Google Scholar 

  7. M. Nakai, M. Niinomi, T. Akahori, N. Ohtsu, H. Nishimura, H. Toda, H. Fukui, and M. Ogawa, Surface Hardening of Biomedical Ti-29Nb-13Ta-4.6Zr and Ti-6Al-4V ELI, by Gas Nıtriding, Mater. Sci. Eng. A, 2008, 486(1–2), p 193–201. https://doi.org/10.1016/j.msea.2007.08.065

    Article  CAS  Google Scholar 

  8. S.R. Hosseini and A. Ahmadi, Evaluation of the Effects of Plasma Nitriding Temperature and Time on the Characterisation of Ti 6Al 4V Alloy, Vacuum, 2013, 87, p 30–39. https://doi.org/10.1016/j.vacuum.2012.06.008

    Article  CAS  Google Scholar 

  9. J. Senatorski, J. Tacikowski, E. Rolinski, and S. Lampman, Tribology of Nitrided and Nitrocarburized Steels, ASM Handbook, Friction, Lubrication and Wear Technology, Vol 18, G. Totten, Ed., ASM International, Novelty, 2017, p 638–652

    Google Scholar 

  10. A. Cabo, Tribological Behaviour of Nitrided and Nitrocarburized Carbon Steel used to Produce Engine Parts, Ind. Lubr. Tribol., 2016, 68, p 125–133. https://doi.org/10.1108/ILT-07-2015-0101

    Article  Google Scholar 

  11. H. Li, Z. Cui, Z. Li, S. Zhu, and X. Yang, Effect of Gas Nitriding Treatment on Cavitation Erosion Behavior of Commercially Pure Ti and Ti-6Al-4V alloy, Surf. Coat. Technol., 2013, 221, p 29–36. https://doi.org/10.1016/j.surfcoat.2013.01.023

    Article  CAS  Google Scholar 

  12. S.-J. Hsueh, J.-Y. Huang, C.-G. Chao, J.-Y. Juang, and T.-F. Liu, Mechanical Behavior and Electrochemical Stability of Gas-Nitrided FeMnAlC Alloy in Simulated Body Fluid, Mater. Lett., 2018, 216, p 150–153. https://doi.org/10.1016/j.matlet.2018.01.019

    Article  CAS  Google Scholar 

  13. Y. Wang, J. Li, C. Dang, Y. Wang, and Y. Zhu, Influence of Carbon Contents on the Structure and Tribocorrosion Properties of TiSiCN Coatings on Ti6Al4V, Tribol. Int., 2017, 109, p 285–296. https://doi.org/10.1016/j.triboint.2017.01.002

    Article  CAS  Google Scholar 

  14. J. Li, Y. Wang, Y. Yao, Y. Wang, and L. Wang, Structure and Tribological Properties of TiSiCN Coating on Ti6Al4V by Arc Ion Plating, Thin Solid Films, 2017, 644, p 115–119. https://doi.org/10.1016/j.tsf.2017.09.053

    Article  CAS  Google Scholar 

  15. A.F. Yetim, A. Celik, and A. Alsaran, Improving Tribological Properties of Ti6Al4V Alloy with Duplex Surface Treatment, Surf. Coat. Technol., 2010, 205(2), p 320–324. https://doi.org/10.1016/j.surfcoat.2010.06.048

    Article  CAS  Google Scholar 

  16. D. Monaghan and R.D. Arnell, Novel PVD Films by Unbalanced Magnetron Sputtering, Vacuum, 1992, 43(1–2), p 77–81. https://doi.org/10.1016/0042-207X(92)90189-4

    Article  CAS  Google Scholar 

  17. R. Ramadoss, N. Kumar, R. Pandian, S. Dash, T.R. Ravindran, D. Arivuoli, and A.K. Tyagi, Tribological Properties and Deformation Mechanism of TiAlN Coating Sliding with Various Counterbodies, Tribol. Int., 2013, 66, p 143–149. https://doi.org/10.1016/j.triboint.2013.05.001

    Article  CAS  Google Scholar 

  18. S. Wilson and A.T. Alpas, TiN Coating Wear Mechanisms in Dry Sliding Contact Against High Speed Steel, Surf. Coat. Technol., 1998, 108–109, p 369–376. https://doi.org/10.1016/S0257-8972(98)00593-3

    Article  Google Scholar 

  19. Z.-Y. Zeng, H.-Q. Xıao, X.-H. Jıe, and Y.-M. Zhang, Friction and Wear Behaviors of TiCN Coating Based ob Electrical Discharge Coating, Trans. Nonferrous Met. Soc. China, 2015, 25(11), p 3716–3722. https://doi.org/10.1016/S1003-6326(15)64013-4

    Article  CAS  Google Scholar 

  20. J.H. Ouyang, T. Murakami, and S. Sasaki, High-Temperature Tribological Properties of A Cathodic Arc Ion-Plated (V, Ti)N Coating, Wear, 2007, 263(7–12), p 1347–1353. https://doi.org/10.1016/j.wear.2006.12.031

    Article  CAS  Google Scholar 

  21. D. Yin, Y. Yang, X. Peng, Y. Qin, and Z. Wang, Tensile and Fracture Process of the TiN/VN Interface From First Principles, Ceram. Int., 2014, 40(9), p 14453–14462. https://doi.org/10.1016/j.ceramint.2014.07.016

    Article  CAS  Google Scholar 

  22. D.B. Lewis, S. Creasey, Z. Zhou, J.J. Forsyth, A.P. Ehiasarian, P.E. Hovsepian, Q. Luo, W.M. Rainforth, and W.D. Münz, The Effect of (Ti + Al): V Ratio on the Structure and Oxidation Behavior of TiAlN/VN Nano-Scale Multilayer Coatings, Surf. Coat. Technol., 2004, 177–178, p 252–259. https://doi.org/10.1016/j.surfcoat.2003.09.041

    Article  CAS  Google Scholar 

  23. A.F. Rousseau, J.G. Partridge, E.L.H. Mayes, J.T. Toton, M. Kracica, D.G. McCulloch, and E.D. Doyle, Microstructural and Tribological Characterisation of a Nitriding/TiAlN PVD Coating Duplex Treatment Applied to M2 High Speed Steel Tools, Surf. Coat. Technol., 2015, 272, p 403–408. https://doi.org/10.1016/j.surfcoat.2015.03.034

    Article  CAS  Google Scholar 

  24. J.D. Bressan, R. Hesse, and E.M. Silva, Jr., Abrasive Wear Behavior of High Speed Steel and Hard Metal Coated with TiAlN and TiCN, Wear, 2001, 250(1–12), p 561–568. https://doi.org/10.1016/S0043-1648(01)00638-X

    Article  Google Scholar 

  25. G.S. Fox-Rabinovich, K. Yamomoto, S.C. Veldhuis, A.I. Kovalev, and G.K. Dosbaeva, Tribological Adaptability of TiAlCrN PVD Coatings Under High Performance Dry Machining Conditions, Surf. Coat. Technol., 2005, 200, p 1804–1813. https://doi.org/10.1016/j.surfcoat.2005.08.057

    Article  CAS  Google Scholar 

  26. O. Knotek, T. Leyendecker, and F. Jungblut, On The Properties of Physically Vapour-Deposited Ti-Al-V-N Coatings, Thin Solid Films, 1987, 153, p 83–90. https://doi.org/10.1016/0040-6090(87)90172-6

    Article  CAS  Google Scholar 

  27. J. Pi, Y. Kong, L. Chen, and Y. Du, Ab Initio Molecular Dynamics Studies on Effect of Zr on Oxidation Resistance of TiAlN Coatings, Appl. Surf. Sci., 2016, 378, p 293–300. https://doi.org/10.1016/j.apsusc.2016.04.002

    Article  CAS  Google Scholar 

  28. Z. Lei, Y. Liu, F. Ma, Z. Song, and Y. Li, Oxidation Resistance of TiAlN/ZrN Multilayer Coatings, Vacuum, 2016, 127, p 22–29. https://doi.org/10.1016/j.vacuum.2016.02.004

    Article  CAS  Google Scholar 

  29. V. Braic, C.N. Zoita, M. Balaceanu, A. Kiss, A. Vladescu, A. Popescu, and M. Braic, TiAlN/TiAlZrN Multilayered Hard Coatings For Enhanced Performance of HSS Drilling Tools, Surf. Coat. Technol., 2010, 204, p 1925–1928. https://doi.org/10.1016/j.surfcoat.2009.08.011

    Article  CAS  Google Scholar 

  30. A. Eser, C. Broeckmann, and C. Simsir, Multiscale Modeling of Tempering of AISI, H13 Hot-Work Tool Steel- Part 1: Prediction of Microstructure Evolution and Coupling with Mechanical Properties, Comput. Mater. Sci., 2016, 113, p 280–291. https://doi.org/10.1016/j.commatsci.2015.11.020

    Article  CAS  Google Scholar 

  31. M.X. Wei, S.Q. Wang, L. Wang, X.H. Cui, and K.M. Chen, Effect of Tempering Conditions on Wear Resistance in Various Wear Mechanisms of H13 Steel, Tribol. Int., 2011, 44(7–8), p 898–905. https://doi.org/10.1016/j.triboint.2011.03.005

    Article  CAS  Google Scholar 

  32. J.C. Diaz-Guillen, M. Naeem, H.M. Hdz-Garcia, J.L. Acevedo-Davila, M.R. Diaz-Guillen, M.A. Khan, J. Iqbal, and A.I. Mtz-Enriquez, Duplex Plasma Treatment of AISI, D2 Tool Steel by Combining Plasma Nitriding (With and Without White Layer) and Post-Oxidation, Surf. Coat. Technol., 2020, 385, p 125420. https://doi.org/10.1016/j.surfcoat.2020.125420

    Article  CAS  Google Scholar 

  33. Q. Kong, L. Ji, H. Li, X. Liu, Y. Wang, J. Chen, and H. Zhou, Influence of Substrate Bias Voltage on the Microstructure and Residual Stress of CrN Films Deposited by Medium Frequency Magnetron Sputtering, Mater. Sci. Eng. B, 2011, 176(11), p 850–854. https://doi.org/10.1016/j.mseb.2011.04.015

    Article  CAS  Google Scholar 

  34. J.-W. Lee, S.-K. Tien, and Y.-C. Kuo, The Effects of Pulse Frequency and Substrate Bias to the Mechanical Properties of CrN Coatings Deposited by Pulsed DC Magnetron Sputtering, Thin Solid Films, 2006, 494, p 161–167. https://doi.org/10.1016/j.tsf.2005.07.190

    Article  CAS  Google Scholar 

  35. P.K. Aw, A.W. Batchelor, and N.L. Loh, Structure and Tribological Properties of Plasma Nitreded Surface Films on Inconel 718, Surf. Coat. Technol., 1997, 89(1–2), p 70–76. https://doi.org/10.1016/S0257-8972(96)02937-4

    Article  CAS  Google Scholar 

  36. İ. Çelik and M. Karakan, Investigation of Structural and Tribological Properties of Duplex Treated Pure Titanium, Kovave Mater., 2016, 54, p 37–43. https://doi.org/10.4149/km_2016_1_37

    Article  CAS  Google Scholar 

  37. S.A. Glatz, R. Hollerweger, P. Polcik, R. Rachbauer, J. Paulitsch, and P.H. Mayrhofer, Thermal Stability and Mechanical Properties of Arc Evaporated Ti-Al-Zr-N Hard Coatings, Surf. Coat. Technol., 2015, 266, p 1–9. https://doi.org/10.1016/j.surfcoat.2015.01.042

    Article  CAS  Google Scholar 

  38. X.T. Zeng, TiN/NbN Superlattice Hard Coatings Deposited by Unbalanced Magnetron Sputtering, Surf. Coat. Technol., 1999, 113(1–2), p 75–79. https://doi.org/10.1016/S0257-8972(98)00825-1

    Article  CAS  Google Scholar 

  39. P.H. Mayrhofer, C. Mitterer, L. Hultman, and H. Clemens, Microstructural Design of Hard Coatings, Prog. Mater. Sci., 2006, 51(8), p 1032–1114. https://doi.org/10.1016/j.pmatsci.2006.02.002

    Article  CAS  Google Scholar 

  40. L. Chen, D. Holec, Y. Du, and P.H. Mayrhofer, Influence of Zr on Structure, Mechanical and Thermal Properties of Ti-Al-N, Thin Solid Films, 2011, 59(16), p 5503–5510. https://doi.org/10.1016/j.tsf.2011.03.139

    Article  CAS  Google Scholar 

  41. Y. Yang, C. Zang, Z. Ding, C. Su, T. Yan, Y. Song, and Y. Cheng, A Correlation Between Micro- and Nano-Indentation on Materials Irradiated by Highenergy Heavy Ions, J. Nucl. Mater., 2018, 498, p 129–136. https://doi.org/10.1016/j.jnucmat.2017.10.025

    Article  CAS  Google Scholar 

  42. A.K. Bhattacharya, Analysis of Elastic and Plastic Deformation Associated With Indentation Testing of Thin Films on Substrates, Int. J. Solids Struct., 1988, 24, p 1287–1298. https://doi.org/10.1016/0020-7683(88)90091-1

    Article  Google Scholar 

  43. Y. Li, Y. He, J. Wei, W. Wang, Y. Zhu, and B. Hu, Wear and Corrosion Properties of AISI, 420 Martensitic Stainless Steel Treated by Active Screen Plasma Nitriding, Surf. Coat. Technol., 2017, 329, p 184–192. https://doi.org/10.1016/j.surfcoat.2017.09.021

    Article  CAS  Google Scholar 

  44. N. Hansen, Hall-Petch Relation and Boundary Strengthening, Scr. Mater., 2004, 51(8), p 801–806. https://doi.org/10.1016/j.scriptamat.2004.06.002

    Article  CAS  Google Scholar 

  45. J.C.A. Batista, M.C. Joseph, C. Godoy, and A. Matthews, Micro-Abrasion Wear Testing of PVD TiN Coatings on Untreated and Plasma Nitrided AISI, H13 Steel, Wear, 2011, 249(10–11), p 971–979. https://doi.org/10.1016/S0043-1648(01)00833-X

    Article  Google Scholar 

  46. K. Levent, A. Hojjat, and K. Özcan, The Effect of TiN, TiAlN, CrAlN, and TiAlN/TiSiN Coatings on the Wear Properties of AISI, H13 Steel at Room Temperature, Surf. Rev. Lett., 2019, 26(9), p 1950063. https://doi.org/10.1142/S0218625X1950063X

    Article  CAS  Google Scholar 

  47. K. Halim, A. Hojjat, A. Çiğdem, A. Akgün, and Ç. Ayhan, Effect of Plasma Nitriding Parameters on the Wear Resistance of Alloy Inconel 718, Met. Sci. Heat Treat., 2016, 58, p 23–28. https://doi.org/10.1007/s11041-016-0037-1

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research is partially supported by TUBITAK (Scientific and Technical Research Council of Turkey) Grant No:116M734.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaşar Sert.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sert, Y., Küçükömeroğlu, T., Ghahramanzadeh Asl, H. et al. Hardness, Adhesion, and Wear Performance of Duplex Treatment Coatings of Nitride/TiAlZrN with Different Zr Target Currents. J. of Materi Eng and Perform 30, 638–651 (2021). https://doi.org/10.1007/s11665-020-05354-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05354-z

Keywords

Navigation