Skip to main content
Log in

Optimized Thermomechanical Processing for Fine-Grained Dual-Phase Microstructure Using Deformation-Induced Ferrite Transformation

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Ultra-fine-grained dual-phase structure of AISI 1010 and Ti-Nb microalloyed steels was obtained using novel thermomechanical processing and power dissipation efficiency map. Specimens were deformed using Gleeble® 3800, maintaining a constant strain rate of 1 s−1 and total true strain of 1.4. Evolution of microstructure is investigated using optical microscopy, SEM and microtexture using EBSD. Fine-grained dual-phase structure could be obtained by careful selection of amount of strain and temperature at each step of deformation. A dual-phase ferrite + martensite microstructure with an average grain size of 3.2 µm for AISI 1010 steel and 1.1 µm for Ti-Nb microalloyed steel was obtained. These fine-grained dual-phase microstructures were obtained in the moderate power dissipation efficiency region, which points to deformation-induced ferrite formation that is supported by the flow curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

References

  1. J. Kadkhodapour, A. Butz, and S. Ziaei Rad, Mechanisms of Void Formation during Tensile Testing in a Commercial, Dual-Phase Steel, Acta Mater., 2011, 59, p 2575–2588

    Article  CAS  Google Scholar 

  2. E.O. Hall, The Deformation and Ageing of Mild Steel: III, Discussion of Results, Proc. Phys. Soc. Sect. B, 1951, 64, p 747–753

    Article  Google Scholar 

  3. N.J. Petch, The Cleavage Strength of Polycrystals, J. Iron Steel Inst., 1953, 174, p 25–28

    CAS  Google Scholar 

  4. N. Park, A. Shibata, D. Terada, and N. Tsuji, Flow Stress Analysis for Determining the Critical Condition of Dynamic Ferrite Transformation in 6Ni-0.1C Steel, Acta Mater., 2013, 61, p 163–173

    Article  CAS  Google Scholar 

  5. Z. Wu, Y. Tang, W. Chen, L. Lu, E. Li, Z. Li, and H. Ding, Exploring the Influence of Al Content on the Hot Deformation Behavior of Fe-Mn-Al-C Steels through 3D Processing Map, Vacuum, 2019, 159, p 447–455

    Article  CAS  Google Scholar 

  6. N. Kumar, S. Kumar, S.K. Rajput, and S.K. Nath, Modelling of Flow Stress and Prediction of Workability by Processing Map for Hot Compression of 43CrNi Steel, ISIJ Int., 2017, 57, p 497–505

    Article  CAS  Google Scholar 

  7. Y. Mehta, S.K. Rajput, G.P. Chaudhari, and V.V. Dabhade, Dynamic Recrystallization and Grain Refinement of Fe-P-C-Si and Fe-P-C-Si-N Steels, J. Mater. Eng. Perform., 2018, 27, p 4770–4782

    Article  CAS  Google Scholar 

  8. K. Singh, S.K. Rajput, and Y. Mehta, Modeling of the Hot Deformation Behavior of a High Phosphorus Steel Using Artificial Neural Networks, Mater. Discov., 2016, 6, p 1–8

    Article  Google Scholar 

  9. S.W. Lee, D.H. Seo, and W.Y. Choo, Study of Ferrite Refinement Using Heavy Deformation in Plain Low Carbon Steels, Korean J. Met. Mater., 1998, 36, p 1966–1973

    CAS  Google Scholar 

  10. H. Yada, C.M. Li, and H. Yamagata, Dynamic γ → α Transformation during Hot Deformation in Iron-Nickel-Carbon Alloys, ISIJ Int., 2000, 40, p 200–206

    Article  CAS  Google Scholar 

  11. S.C. Hong, S.H. Lim, K.J. Lee, D.H. Shin, and K.S. Lee, Effect of Undercooling of Austenite on Strain Induced Ferrite Transformation Behavior, ISIJ Int., 2003, 43, p 394–399

    Article  CAS  Google Scholar 

  12. M. Tong, J. Ni, Y. Zhang, D. Li, and Y. Li, Monte Carlo-Method Simulation of the Deformation-Induced Ferrite Transformation in the Fe-C System, Metall. Mater. Trans. A, 2004, 35, p 1565–1577

    Article  Google Scholar 

  13. Y.C. Lin, F. Wu, Q. Wang, D. Chen, and S.K. Singh, Microstructural Evolution of a Ni-Fe-C Base Superalloy during Non-isothermal Two Stage Hotdeformation, Vacuum, 2018, 151, p 283–293

    Article  CAS  Google Scholar 

  14. Y. Han, S. Yan, B. Yin, H. Li, and X. Ran, Effects of Temperature and Strain Rate on the Dynamic Recrystallization of Medium-High Carbon High Silicon Banitic Steel during Hot Deformation, Vacuum, 2018, 148, p 78–87

    Article  CAS  Google Scholar 

  15. Y.C. Lin, D.G. He, M.S. Chen, X.M. Chen, C.Y. Zhao, X. Ma, and Z.L. Long, EBSD Analysis of Evolution of Dynamic Recrystallization Grains and δ Phase in a Nickel-Based Superalloy during Hot Compressive Deformation, Mater. Des., 2016, 97, p 13–24

    Article  CAS  Google Scholar 

  16. D. Wen, Y.C. Lin, X. Li, and S.K. Singh, Hot Deformation Characteristics and Dislocation Substructure Evolution of a Nickel-Base Alloy Considering Effects of δ Phase, J. Alloys Compd., 2018, 764, p 1008–1020

    Article  CAS  Google Scholar 

  17. N.J. Kim and G. Thomas, Effects of Morphology on the Mechanical Behavior of a Dual Phase Fe2Si0.1C Steel, Metall. Trans. A, 1981, 12, p 483–489

    Article  CAS  Google Scholar 

  18. M. Calcagnotto, Y. Adachi, D. Ponge, and D. Raabe, Deformation and Fracture Mechanisms in Fine- and Ultrafine-Grained Ferrite/Martensite Dual-Phase Steels and the Effect of Aging, Acta Mater., 2011, 59, p 658–670

    Article  CAS  Google Scholar 

  19. P. Movahed, S. Kolahgar, S.P.H. Marashi, M. Pouranvari, and N. Parvin, The Effect of Intercritical Heat Treatment Temperature on the Tensile Properties and Work Hardening Behavior of Ferrite-Martensite Dual Phase Steel Sheets, Mater. Sci. Eng. A, 2009, 518, p 1–6

    Article  Google Scholar 

  20. R. Song, D. Ponge, and D. Raabe, Improvement of the Work Hardening Rate of Ultrafine Grained Steels Through Second Phase Particles, Scr. Mater., 2005, 52, p 1075–1080

    Article  CAS  Google Scholar 

  21. S.C. Hong and K.S. Lee, Influence of Deformation Induced Ferrite Transformation on Grain Refinement of Dual Phase Steel, Mater. Sci. Eng. A, 2002, 323, p 148–159

    Article  Google Scholar 

  22. T. Morimoto, I. Chikushi, R. Kurahashi, and J. Yanagimoto, Proceedings of the TMP 2004: 2nd International Conference on Thermomechanical Processing of Steels (Stahleisen Verlag GmbH, Düsseldorf, 2004).

  23. R. Ueji, N. Tsuji, Y. Minamino, and Y. Koizumi, Ultragrain Refinement of Plain Low Carbon Steel by Cold-Rolling and Annealing of Martensite, Acta Mater., 2002, 50, p 4177–4189

    Article  CAS  Google Scholar 

  24. N. Tsuji, R. Ueji, Y. Minamino, and Y. Saito, A New and Simple Process to Obtain Nano-structured Bulk Low-Carbon Steel with Superior Mechanical Property, Scr. Mater., 2002, 46, p 305–310

    Article  CAS  Google Scholar 

  25. P.J. Hurley and P.D. Hodgson, Formation of Ultra-Fine Ferrite in Hot Rolled Strip: Potential Mechanism for Grain Refinement, Mater. Sci. Eng. A, 2001, 302, p 206–214

    Article  Google Scholar 

  26. H. Yada, Y. Matsumura, K. and Nakazima, Ferritic Steel Having Ultra-Fine Grains and a Method for Producing the Same, Patent No 4466842 (1984).

  27. P.J. Hurley, P.D. Hodgson, and B.C. Muddle, Analysis and Characterisation of Ultra-Fine Ferrite Produced during a New Steel Strip Rolling Process, Scr. Mater., 1999, 40, p 433–438

    Article  CAS  Google Scholar 

  28. H. Beladi, G.L. Kelly, A. Shokouhi, and P.D. Hodgson, Effect of Thermomechanical Parameters on the Critical Strain for Ultrafine Ferrite Formation through Hot Torsion Testing, Mater. Sci. Eng. A, 2004, 367, p 152–161

    Article  Google Scholar 

  29. J.K. Choi, D.H. Seo, J.S. Lee, K.K. Um, and W.Y. Choo, Formation of Ultrafine Ferrite by Strain-Induced Dynamic Transformation in Plain Low Carbon Steel, ISIJ Int., 2003, 43, p 746–754

    Article  CAS  Google Scholar 

  30. H. Beladi, G.L. Kelly, A. Shokouhi, and P.D. Hodgson, The Evolution of Ultrafine Ferrite Formation Through Dynamic Strain-Induced Transformation, Mater. Sci. Eng. A, 2004, 371, p 343–352

    Article  Google Scholar 

  31. S.L. Semiatin, Introduction to Forming and Forging Processes, in Forming and Forging. Metals Handbook, Vol 14, 9th ed., ASM International, Philadelphia, 1988

    Google Scholar 

  32. C. Klinkenberg, K. Hulka, and W. Bleck, Niobium Carbide Precipitation in Microalloyed Steel, Steel Res., 2004, 75, p 744–758

    Article  CAS  Google Scholar 

  33. S.K. Rajput, G.P. Chaudhari, and S.K. Nath, Characterization of Hot Deformation Behavior of a Low Carbon Steel Using Processing Maps, Constitutive Equations and Zener–Hollomon Parameter, J. Mater. Process. Technol., 2016, 237, p 113–125

    Article  CAS  Google Scholar 

  34. S.K. Rajput, G.P. Chaudhari, and S.K. Nath, Physical Simulation of Hot Deformation of Low-Carbon Ti-Nb Microalloyed Steel and Microstructural Studies, J. Mater. Eng. Perform., 2014, 23, p 2930–2942

    Article  CAS  Google Scholar 

  35. K. Mukherjee, S.S. Hazra, and M. Militzer, Grain Refinement in Dual-Phase Steels, Metall. Mater. Trans. A, 2009, 40, p 2145–2159

    Article  Google Scholar 

  36. H. Dong and X. Sun, Deformation Induced Ferrite Transformation in Low Carbon Steels, Curr. Opin. Solid State Mater. Sci., 2005, 9, p 269–276

    Article  CAS  Google Scholar 

  37. ASTM E384-99, Standard Test Method for Knoop and Vickers Hardness of Materials (2014).

  38. Y.D. Huang, W.Y. Yang, and Z.Q. Sun, Formation of Ultrafine Grained Ferrite in Low Carbon Steel by Heavy Deformation in Ferrite or Dual Phase Region, J. Mater. Process. Technol., 2003, 134, p 19–25

    Article  CAS  Google Scholar 

  39. R.Z. Valiev, N.A. Krasilnikov, and N.K. Tsenev, Plastic Deformation of Alloys with Submicron-Grained Structure, Mater. Sci. Eng. A, 1991, 137, p 35–40

    Article  Google Scholar 

  40. B. Mintz, J. Lewis, and J.J. Jonas, Importance of Deformation Induced Ferrite and Factors which Control Its Formation, Mater. Sci. Technol., 1997, 13, p 379–388

    Article  CAS  Google Scholar 

  41. S.V.S.N. Murty, B.N. Rao, and B.P. Kashyap, On the Hot Working Characteristics of 2014 Al-20 vol.% Al2O3 Metal Matrix Composite, J. Mater. Process. Technol., 2005, 166, p 279–285

    Article  CAS  Google Scholar 

  42. S.K. Rajput, M. Dikovits, G.P. Chaudhari, C. Poletti, F. Warchomicka, V. Pancholi, and S.K. Nath, Physical Simulation of Hot Deformation and Microstructural Evolution of AISI, 1016 Steel Using Processing Maps, Mater. Sci. Eng. A, 2013, 587, p 291–300

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Rajput.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajput, S.K., Mehta, Y., Chaudhari, G.P. et al. Optimized Thermomechanical Processing for Fine-Grained Dual-Phase Microstructure Using Deformation-Induced Ferrite Transformation. J. of Materi Eng and Perform 29, 4260–4274 (2020). https://doi.org/10.1007/s11665-020-04965-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04965-w

Keywords

Navigation