Skip to main content
Log in

Mechanical and Corrosion Behavior of Plasma Electrolytic Oxidation Coatings on AZ31B Mg Alloy Reinforced with Multiwalled Carbon Nanotubes

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Plasma electrolytic oxidation (PEO) is an effective surface modification technique. The PEO technique has been widely used to grow protective oxide layers into materials with lower corrosion resistance properties. In this study, a new technique was used for synthesizing AZ31B magnesium alloy reinforced with multiwalled carbon nanotubes (MWCNTs). After the synthesis, the composites were coated by PEO in a solution of sodium metasilicate pentahydrate (Na2SiO3·5H2O) and potassium hydroxide (KOH). The microstructure morphology and composition in the interface were characterized by scanning electron microscopy and energy-dispersive x-ray spectroscopy. The hardness, the elastic modulus and adherence of the coatings were studied by nanoindentation tests. Finally, the samples were subjected to corrosion tests by electrochemical impedance spectroscopy. The microstructure and mechanical analysis shows that the PEO coating morphology has a dependency on the MWCNTs content into the metal matrix and exhibited good mechanical properties and high corrosion resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.K. Kulekci, Magnesium and its Alloys Applications in Automotive Industry, Int. J. Adv. Manuf. Technol., 2008, 39, p 851–865

    Article  Google Scholar 

  2. R. Sekhar and T.P. Singh, Mechanisms in Turning of Metal Matrix Composites: A Review, J. Mater. Res. Technol., 2015, 4, p 197–207. https://doi.org/10.1016/j.jmrt.2014.10.013

    Article  Google Scholar 

  3. S.C. Tjong, Recent Progress in the Development and Properties of Novel Metal Matrix Nanocomposites Reinforced with Carbon Nanotubes and Graphene Nanosheets, Mater. Sci. Eng. R Rep., 2013, 74, p 281–350

    Article  Google Scholar 

  4. M. Paramsothy, S. Hassan, N. Srikanth, and M. Gupta, Simultaneous Enhancement of Tensile/Compressive Strength and Ductility of Magnesium Alloy AZ31 Using Carbon Nanotubes, J. Nanosci. Nanotechnol., 2010, 10, p 956–964

    Article  CAS  Google Scholar 

  5. S.R. Bakshi, V. Singh, S. Seal, and A. Agarwal, Aluminum Composite Reinforced with Multiwalled Carbon Nanotubes from Plasma Spraying of Spray Dried Powders, Surf. Coat. Technol., 2009, 203, p 1544–1554

    Article  CAS  Google Scholar 

  6. A. Esawi, K. Morsi, A. Sayed, M. Taher, and S. Lanka, Effect of Carbon Nanotube (CNT) Content on the Mechanical Properties of CNT-Reinforced Aluminium Composites, Compos. Sci. Technol., 2010, 70, p 2237–2241

    Article  CAS  Google Scholar 

  7. L. Jiang, G. Fan, Z. Li, X. Kai, D. Zhang, Z. Chen, S. Humphries, G. Heness, and W.Y. Yeung, An Approach to the Uniform Dispersion of a High Volume Fraction of Carbon Nanotubes in Aluminum Powder, Carbon, 2011, 49, p 1965–1971

    Article  CAS  Google Scholar 

  8. K. Morsi and A. Esawi, Effect of Mechanical Alloying Time and Carbon Nanotube (CNT) Content on the Evolution of Aluminum (Al)–CNT Composite Powders, J. Mater. Sci., 2007, 42, p 4954–4959

    Article  CAS  Google Scholar 

  9. C.A.I. Merino, J.L. Sillas, J. Meza, and J.H. Ramirez, Metal Matrix Composites Reinforced with Carbon Nanotubes by an Alternative Technique, J. Alloys Compd., 2017, 707, p 257–263

    Article  Google Scholar 

  10. C. Isaza, G. Sierra, and J. Meza, A Novel Technique for Production of Metal Matrix Composites Reinforced with Carbon Nanotubes, J. Manuf. Sci. Eng., 2016, 138, p 024501

    Article  Google Scholar 

  11. C.A.I. Merino, J. Ledezma Sillas, J. Meza, and J. Herrera Ramírez, Mechanical Properties and Interfacial Phenomena in Aluminum Reinforced with Carbon Nanotubes Manufactured by the Sandwich Technique, J. Compos. Mater., 2017, 51, p 1619–1629

    Article  Google Scholar 

  12. L. Pezzato, K. Brunelli, S. Gross, M. Magrini, and M. Dabalà, Effect of Process Parameters of Plasma Electrolytic Oxidation on Microstructure and Corrosion Properties of Magnesium Alloys, J. Appl. Electrochem., 2014, 44, p 867–879

    Article  CAS  Google Scholar 

  13. S.L. Aktuğ, S. Durdu, I. Kutbay, and M. Usta, Effect of Na2SiO3 5H2O Concentration on Microstructure and Mechanical Properties of Plasma Electrolytic Oxide Coatings on AZ31 Mg Alloy Produced by Twin Roll Casting, Ceram. Int., 2016, 42, p 1246–1253

    Article  Google Scholar 

  14. S.A. Alsubaie, P. Bazarnik, M. Lewandowska, Y. Huang, and T.G. Langdon, Evolution of Microstructure and Hardness in an AZ80 Magnesium Alloy Processed by High-Pressure Torsion, J. Mater. Res. Technol., 2016, 5, p 152–158. https://doi.org/10.1016/j.jmrt.2015.11.006

    Article  CAS  Google Scholar 

  15. J. Gray and B. Luan, Protective Coatings on Magnesium and its Alloys—A Critical Review, J. Alloys Compd., 2002, 336, p 88–113

    Article  CAS  Google Scholar 

  16. K.W. Guo, A Review of Magnesium/Magnesium Alloys Corrosion and its Protection, Recent Pat. Corros. Sci., 2010, 2, p 13–21

    Article  CAS  Google Scholar 

  17. B.-S. Lou, Y.-Y. Lin, C.-M. Tseng, Y.-C. Lu, J.-G. Duh, and J.-W. Lee, Plasma Electrolytic Oxidation Coatings on AZ31 Magnesium Alloys with Si3N4 Nanoparticle Additives, Surf. Coat. Technol., 2017, 332, p 358–367. https://doi.org/10.1016/j.surfcoat.2017.05.094

    Article  CAS  Google Scholar 

  18. G. Barati Darband, M. Aliofkhazraei, P. Hamghalam, and N. Valizade, Plasma Electrolytic Oxidation of Magnesium and its Alloys: Mechanism, Properties and Applications, J. Magnes. Alloys, 2017, 5, p 74–132. https://doi.org/10.1016/j.jma.2017.02.004

    Article  CAS  Google Scholar 

  19. B.-S. Lou, J.-W. Lee, C.-M. Tseng, Y.-Y. Lin, and C.-A. Yen, Mechanical Property and Corrosion resistance Evaluation of AZ31 Magnesium Alloys by Plasma Electrolytic Oxidation Treatment: Effect of MoS2 Particle Addition, Surf. Coat. Technol., 2018, 350, p 813–822

    Article  CAS  Google Scholar 

  20. H. Duan, C. Yan, and F. Wang, Effect of Electrolyte Additives on Performance of Plasma Electrolytic Oxidation Films Formed on Magnesium Alloy AZ91D, Electrochim. Acta, 2007, 52, p 3785–3793

    Article  CAS  Google Scholar 

  21. X. Zhang, Z. Zhao, F. Wu, Y. Wang, and J. Wu, Corrosion and Wear Resistance of AZ91D Magnesium Alloy with and Without Microarc Oxidation Coating in Hank’s Solution, J. Mater. Sci., 2007, 42, p 8523–8528

    Article  CAS  Google Scholar 

  22. J.-H. Jo, J.-Y. Hong, K.-S. Shin, H.-E. Kim, and Y.-H. Koh, Enhancing Biocompatibility and Corrosion Resistance of Mg Implants via Surface Treatments, J. Biomater. Appl., 2012, 27, p 469–476

    Article  CAS  Google Scholar 

  23. G. Peitao, T. Mingyang, and Z. Chaoyang, Tribological and Corrosion Resistance Properties of Graphite Composite Coating on AZ31 Mg Alloy Surface Produced by Plasma Electrolytic Oxidation, Surf. Coat. Technol., 2019, 359, p 197–205

    Article  CAS  Google Scholar 

  24. L. Tonelli, L. Pezzato, P. Dolcet, M. Dabalà, and C. Martini, Effects of Graphite Nano-Particle Additions on Dry Sliding Behaviour of Plasma-Electrolytic-Oxidation-Treated EV31A Magnesium Alloy Against Steel in Air, Wear, 2018, 404, p 122–132

    Article  Google Scholar 

  25. J. Zhuang, R. Song, H. Li, and N. Xiang, Effect of Various Additives on Performance of Plasma Electrolytic Oxidation Coatings Formed on AZ31 Magnesium Alloy in the Phosphate Electrolytes, J. Wuhan Univ. Technology-Mater. Sci. Ed., 2018, 33, p 703–709

    Article  CAS  Google Scholar 

  26. J. Zhuang, Y. Guo, N. Xiang, Y. Xiong, Q. Hu, and R. Song, A Study on Microstructure and Corrosion Resistance of ZrO2-Containing PEO Coatings Formed on AZ31 Mg Alloy in Phosphate-Based Electrolyte, Appl. Surf. Sci., 2015, 357, p 1463–1471

    Article  CAS  Google Scholar 

  27. X. Gu, N. Li, W. Zhou, Y. Zheng, X. Zhao, Q. Cai, and L. Ruan, Corrosion Resistance and Surface Biocompatibility of a Microarc Oxidation Coating on a Mg–Ca Alloy, Acta Biomater., 2011, 7, p 1880–1889

    Article  CAS  Google Scholar 

  28. C.A. Isaza M, J. Herrera Ramírez, J. Ledezma Sillas, and J. Meza, Dispersion and Alignment Quantification of Carbon Nanotubes in a Polyvinyl Alcohol Matrix, J. Compos. Mater., 2018, 52, p 1617–1626

    Article  CAS  Google Scholar 

  29. S.A. Medina Escobar, C.A. Isaza Merino, and J.M. Meza Meza, Mechanical and thermal behavior of polyvinyl alcohol reinforced with aligned carbon nanotubes, Matéria (Rio de Janeiro), 2015, 20, p 794–802

    Article  Google Scholar 

  30. K. Dorado-Bustamante, B. Zuluaga-Díaz, and H. Estupiñán-Duran, Bioactivity Analysis of the AZ31 Mg Alloy Coated by PEO (Plasma Electrolytic Oxidation), Dyna, 2018, 85, p 328–337

    Article  Google Scholar 

  31. S. Stojadinović, R. Vasilić, J. Radić-Perić, and M. Perić, Characterization of Plasma Electrolytic Oxidation of Magnesium Alloy AZ31 in Alkaline Solution Containing Fluoride, Surf. Coat. Technol., 2015, 273, p 1–11

    Article  Google Scholar 

  32. W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7, p 1564–1583

    Article  CAS  Google Scholar 

  33. P. Gupta, G. Tenhundfeld, E. Daigle, and D. Ryabkov, Electrolytic Plasma Technology: Science and Engineering—An Overview, Surf. Coat. Technol., 2007, 201, p 8746–8760

    Article  CAS  Google Scholar 

  34. R.O. Hussein, X. Nie, and D.O. Northwood, Plasma Electrolytic Oxidation (PEO) Coatings on Mg-alloys for Improved Wear and Corrosion Resistance. WIT Trans. Eng. Sci., 2015, 91, p 163–176

    Article  Google Scholar 

  35. A. Leyland and A. Matthews, On the Significance of the H/E Ratio in Wear Control: A Nanocomposite Coating Approach to Optimised Tribological Behaviour, Wear, 2000, 246, p 1–11

    Article  CAS  Google Scholar 

  36. A.J. Bard, L.R. Faulkner, J. Leddy, and C.G. Zoski, Electrochemical Methods: Fundamentals and Applications, Vol 2, Wiley, New York, 1980

    Google Scholar 

  37. C. Cuevas-Arteaga, M.L. Brito, A. Molina-Ocampo, J. Colin, S. Serna-Barquera, and A. Torres-Islas, Analysis of Electrochemical Impedance and Noise Data for AISI-310 Exposed to Lithium Bromide Solution, Int. J. Electrochem. Sci., 2013, 8, p 9593–9606

    CAS  Google Scholar 

  38. D.C. Silverman, Corrosion Prediction in Complex Environments using Electrochemical Impedance Spectroscopy, Electrochim. Acta, 1993, 38, p 2075–2078

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Universidad Nacional de Colombia at Medellín, Centro de Investigación en Materiales Avanzados (CIMAV-Mexico) and Institución Universitaria Pascual Bravo for the financial support with the research ‘Desarrollo de materiales metálicos livianos nano-reforzados por medio de técnicas alternativas.’ JMHR thanks to CONACYT-Red Temática de Nanociencias y Nanotecnología and Red Temática de Ciencia y Tecnología del Espacio.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cesar A. Isaza M. or Juan S. Rudas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isaza M., C.A., Zuluaga D., B., Rudas, J.S. et al. Mechanical and Corrosion Behavior of Plasma Electrolytic Oxidation Coatings on AZ31B Mg Alloy Reinforced with Multiwalled Carbon Nanotubes. J. of Materi Eng and Perform 29, 1135–1145 (2020). https://doi.org/10.1007/s11665-020-04633-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04633-z

Keywords

Navigation