Skip to main content

Advertisement

Log in

Creep Behavior of As-Cast Mg-10 wt.%Sn and Mg-10 wt.%Sn-3 wt.%Al-1 wt.%Zn Alloys: A Comparative Study

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The present investigation highlights the creep deformation and rupture behavior of indigenously produced as-cast Mg-10 wt.%Sn-3 wt.%Al-1 wt.%Zn (TAZ1031) and Mg-10 wt.%Sn (T10) alloys. Conventional creep tests were conducted at 423 K (150 °C) in the stress range of 30-45 MPa and at 45 MPa in the temperature range of 423-453 K (150-180 °C) for both the alloys. The nature of creep curves was found to be identical for both the alloys with short primary and secondary creep regime, followed by extended tertiary creep region. The creep resistance of the TAZ1031 alloy was better than the T10 alloy. The former exhibited reduced minimum creep rate and enhanced creep rupture life under identical creep test conditions with respect to the latter. The change of minimum creep rate (έmin) followed a power-law relationship with a change in applied stress (σ) for both the alloys with a significant change in stress exponent (n) value. Activation energy for creep deformation of TAZ1031 alloy (~ 117 kJ/mol) was found to be higher than T10 alloy (~ 105 kJ/mol). Fine secondary Mg2Sn precipitates within the α-Mg matrix and primary Mg2Sn, Mg17Al12 and MgZn2 precipitates along the grain boundaries improved the creep properties of TAZ1031 alloy. On the contrary, the threshold stress required for creep deformation was found to be significantly low in TAZ1031 alloy due to the presence of Mg17Al12. Both creep damage analysis and dimpled fracture surfaces revealed necking dominated creep deformation for the alloys. SEM studies revealed the absence of creep cavities along grain/dendritic boundaries for the investigated alloys, which substantiated the formation of dimpled fracture surfaces during creep deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. H. Liu, Y. Chen, Y. Tang, S. Wei, and G. Niu, The Microstructure, Tensile Properties, and Creep Behavior of As-Cast Mg-(1–10)% Sn Alloys, J. Alloys Compd., 2007, 440, p 122–126

    Article  CAS  Google Scholar 

  2. S. Wei, Y. Chen, Y. Tang, H. Liu, S. Xiao, G. Niu, X. Zhang, and Y. Zhao, Compressive Creep Behavior of As-Cast and Aging-Treated Mg-5wt% Sn Alloys, Mater. Sci. Eng. A, 2008, 492, p 20–23

    Article  Google Scholar 

  3. C.L. Mendis, C.J. Bettles, M.A. Gibson, S. Gorsse, and C.R. Hutchinson, Refinement of Precipitate Distributions in an Age-Hardenable Mg-Sn Alloy Through Microalloying, Philos. Mag. Lett., 2006, 86, p 443–456

    Article  CAS  Google Scholar 

  4. J.F. Nie, Precipitation and Hardening in Magnesium Alloys, Metall. Mater. Trans. A, 2012, 43, p 3891–3939

    Article  CAS  Google Scholar 

  5. Y. Huang, H. Dieringa, K.U. Kainer, and N. Hort, Understanding Effects of Microstructural Inhomogeneity on Creep Response—New Approaches to Improve the Creep Resistance in Magnesium Alloys, J. Magnes. Alloys, 2014, 2, p 124–132

    Article  CAS  Google Scholar 

  6. C.L. Mendis, C.J. Bettles, M.A. Gibson, and C.R. Hutchinson, An Enhanced Age Hardening Response in Mg-Sn Based Alloys Containing Zn, Mater. Sci. Eng. A, 2006, 435, p 163–171

    Article  Google Scholar 

  7. M.A. Gibson, X.Y. Fang, C.J. Bettles, and C.R. Hutchinson, The Effect of Precipitate State on the Creep Resistance of Mg-Sn Alloys, Scr. Mater., 2010, 63(8), p 899–902

    Article  CAS  Google Scholar 

  8. F.R. Elsayed, T.T. Sasaki, C.L. Mendis, T. Ohkubo, and K. Hono, Compositional Optimization of Mg-Sn-Al Alloys for Higher Age Hardening Response, Mater. Sci. Eng. A, 2013, 566, p 22–29

    Article  CAS  Google Scholar 

  9. C. Praveen, J. Christopher, V. Ganesan, G.V. Prasad Reddy, G. Sasikala, and S.K. Albert, Constitutive Modelling of Transient and Steady State Creep Behaviour of Type 316LN Austenitic Stainless Steel, Mech. Mater., 2019, 137, p 103122

    Article  Google Scholar 

  10. S.D. Yadav, T. Scherer, G.V. Prasad Reddy, K. Laha, G. Sasikala, S.K. Albert, and C. Poletti, Creep Modelling of P91 Steel Employing a Microstructural Based Hybrid Concept, Eng. Fract. Mech., 2018, 200, p 104–114

    Article  Google Scholar 

  11. B. Xiao, X. Lianyong, L. Zhao, H. Jing, and Y. Han, Deformation-Mechanism-Based Creep Model and Damage Mechanism of G115 Steel Over a Wide Stress Range, Mater. Sci. Eng. A, 2019, 743, p 280–293

    Article  CAS  Google Scholar 

  12. P. Poddar, K.L. Sahoo, S. Mukherjee, and A.K. Ray, Creep Behaviour of Mg-8% Sn and Mg-8% Sn-3% Al-1% Si alloys, Mater. Sci. Eng. A, 2012, 545, p 103–110

    Article  CAS  Google Scholar 

  13. F.H. Norton, The Creep of Steel at High Temperatures, McGraw-Hill, NewYork, 1929

    Google Scholar 

  14. R.W. Bailey, Creep of Steel Under Simple and Compound Stress, Engineering, 1930, 121, p 265

    Google Scholar 

  15. J.S. Lee, H.G. Armaki, K. Maruyama, T. Muraki, and H. Asahi, Causes of Breakdown of Creep Strength in 9Cr-1.8W-0.5Mo-VNb Steel, Mater. Sci. Eng. A, 2006, 428, p 270–275

    Article  Google Scholar 

  16. W.-G. Kim, J.-Y. Park, I.M.W. Ekaputra, S.-J. Kim, M.-H. Kim, and Y.-W. Kim, Creep Deformation and Rupture Behavior of Alloy 617, Eng. Fail. Anal., 2015, 58, p 441–451

    Article  CAS  Google Scholar 

  17. G. Nayyeri and R. Mahmudi, Enhanced Creep Properties of a Cast Mg-5Sn Alloy Subjected to Aging-Treatment, Mater. Sci. Eng. A, 2010, 527, p 4613–4618

    Article  Google Scholar 

  18. R. Lagneborg and B. Bergman, The Stress/Creep Rate Behaviour of Precipitation-Hardened Alloys, Met. Sci., 1976, 10, p 20–28

    Article  CAS  Google Scholar 

  19. N.Q. Vo, C.H. Liebscher, M.J.S. Rawlings, M. Asta, and D.C. Dunand, Creep Properties and Microstructure of a Precipitation-Strengthened Ferritic Fe-Al-Ni-Cr alloy, Acta Mater., 2014, 71, p 89–99

    Article  CAS  Google Scholar 

  20. B. Xiao, L. Xu, L. Zhao, H. Jing, Y. Han, and Y. Zhang, Creep Properties, Creep Deformation Behaviour, and Microstructural Evolution of 9Cr-3W-3Co-1CuVNbB Martensite Ferritic Steel, Mater. Sci. Eng. A, 2018, 711, p 434–447

    Article  CAS  Google Scholar 

  21. S.-H. Song, J. Wu, X.-J. Wei, D. Kumar, S.-J. Liu, and L.-Q. Weng, Creep Property Evaluation of a 2.25Cr-1Mo Low Alloy Steel, Mater. Sci. Eng. A., 2010, 527, p 2398–2403

    Article  Google Scholar 

  22. F.C. Monkman and N.J. Grant, An Empirical Relationship Between Rupture Life and Minimum Creep Rate in Creep-Rupture Tests, Proc. Am. Soc. Test. Mater., 1956, 56, p 593–620

    Google Scholar 

  23. F. Dobes and K. Milicka, The Relation Between Minimum Creep Rate and Time to Fracture, Met. Sci., 1976, 10, p 382–384

    Article  CAS  Google Scholar 

  24. W.G. Kim, S.H. Kim, and W.S. Ryu, Evaluation of Monkman–Grant Parameters for type 316LN and Modified 9Cr-1Mo Stainless Steels, KSME Int. J., 2002, 16, p 1420–1427

    Article  Google Scholar 

  25. B.K. Choudhary, Tertiary Creep Behaviour of 9Cr-1Mo Ferritic Steel, Mater. Sci. Eng. A, 2013, 585, p 1–9

    Article  CAS  Google Scholar 

  26. B.K. Choudhary, C. Phaniraj, and R. Baldev, Interesting Relationships for Creep Deformation and Damage and Their Applicability for 9Cr-1Mo Ferritic Steel, Trans. Indian Inst. Met., 2010, 63, p 675–680

    Article  CAS  Google Scholar 

  27. B.K. Choudhary, S. Saroja, K. Bhanu Sankara Rao, and S.L. Mannan, Creep-Rupture Behaviour of Forged Thick Section 9Cr-1Mo Ferritic Steel, Metall. Mater. Trans. A., 1999, 30, p 2825–2834

    Article  Google Scholar 

  28. C. Phaniraj, B.K. Choudhary, K. Bhanu Sankara Rao, and R. Baldev, Relationship Between Time to Reach Monkman–Grant Ductility and Rupture Life, Scr. Mater., 2003, 48, p 1313–1318

    Article  CAS  Google Scholar 

  29. T. Shrestha, M. Basirat, I. Charit, G.P. Potirniche, and K.K. Rink, Creep Rupture Behavior of Grade 91 Steel, Mater. Sci. Eng. A, 2013, 565, p 382–391

    Article  CAS  Google Scholar 

  30. B.F. Dyson and T.B. Gibbons, Tertiary Creep in Nickel-Base Superalloys: Analysis of Experimental Data and Theoretical Synthesis, Acta Met., 1987, 35, p 2355–2369

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Authors are grateful to Dr. Mainak Ghosh, Principal Scientist, Materials Engineering Division, CSIR-National Metallurgical Laboratory, Jamshedpur, for his valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumanta Bagui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagui, S., Murugesan, A.P. & Poddar, P. Creep Behavior of As-Cast Mg-10 wt.%Sn and Mg-10 wt.%Sn-3 wt.%Al-1 wt.%Zn Alloys: A Comparative Study. J. of Materi Eng and Perform 28, 7616–7628 (2019). https://doi.org/10.1007/s11665-019-04513-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04513-1

Keywords

Navigation