Skip to main content
Log in

Effect of Heat Treatment on Microstructures and Mechanical Properties of Mg–5.5Gd–3.5Nd–0.5Zn–0.4Zr Alloy

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this study, we developed a new kind of high-strength Mg–5.5Gd–3.5Nd–0.5Zn–0.4Zr (wt%) alloy. Microstructures and mechanical properties of this new kind of alloy under different heat treatment conditions have been investigated. The as-cast alloy was composed of α-Mg matrix, discontinuous α-Mg + Mg5Gd eutectic phases, needle-like Mg12Nd phases, spherical α(Zr) particles, and cuboid-shaped (Gd, Nd)H2 phases within α-Mg grains. Rod-like Zn2Zr3 phases were formed and unevenly distributed inside the α-Mg matrix after solution treatment. Thin-plate β′ phases precipitated after aging at 205 °C for 24 h. The T6-treated alloy exhibited excellent tensile properties up to 250 °C. The dislocation cross-slip was activated when tensile temperature increased to 300 °C, which resulted in the largely decreased strength and increased elongation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhang J H, Liu S J, Wu R Z, Hou L G, and Zhang M L, J. Magnesium Alloys 6 (2018) 277.

    Article  CAS  Google Scholar 

  2. Pollock T M, Science. 328 (2010) 986.

    Article  CAS  Google Scholar 

  3. Mordike B L, and Ebert T, Mater. Sci. Eng. A 302 (2001) 37.

    Article  Google Scholar 

  4. Mabuchi M, Chino Y, and Iwasaki H, Mater Trans 43 (2002) 2063.

    Article  CAS  Google Scholar 

  5. Gao L, Chen R, and Han E, J. Alloys Compd. 481 (2009) 79.

    Google Scholar 

  6. Zhang Y, Rong W, Wu Y J, and Peng L M, J Mater Sci Technol, 54 (2020) 160.

    Article  Google Scholar 

  7. Shi L L, Huang Y D, Yang L, Feyerabend F, Mendis C, Willumeit R, Kainer K U, and Hort N, J Mech Behav Biomed Mater, 47 (2015) 38.

    Article  CAS  Google Scholar 

  8. Li J C, He Z L, Fu P H, Peng L M, and Ding W J. Mater. Sci. Eng. A 651 (2016) 745.

    Article  CAS  Google Scholar 

  9. Vostry P, Smola B, Stulikova I, Von B F, and Mordike B L, Phys Status Solid A, 175 (1999) 491.

    Article  CAS  Google Scholar 

  10. Rokhlin L L, Dobatkina T V and Nikitina N I, Mater. Sci. Forum, 419 (2003) 291.

    Article  Google Scholar 

  11. Qiang L, Wang Q D, Wang Y X, Zeng X Q, and Ding W J, J. Alloys Compd. 427 (2007) 115.

    Article  Google Scholar 

  12. Yang J, Wang J L, and Wang L D, Mater. Sci. Eng. A 479 (2008) 339.

    Article  Google Scholar 

  13. Negishi Y, Nishimura T, Iwasawa S, Kojima Y, and Ninomiya R, Journal of Japan Institute of Light Metals, 44 (1994)555.

    Article  CAS  Google Scholar 

  14. Luo S F, Yang G Y, Xiao L, and Jie W Q, TMS Annual Meeting & Exhibition: Springer, 2018, 237.

  15. Nie J F, Gao X, and Zhu S M, Scr. Mater 53 (2005) 1049.

    Article  CAS  Google Scholar 

  16. Gao X, and Nie J F, Scr. Mater 58 (2008) 619.

    Article  CAS  Google Scholar 

  17. Qin H, Yang G Y, Zhang L, Ouyang S X, Wang C H, and Jie W Q, Phys Status Solid A, 218 (2021) 10.

    Google Scholar 

  18. Luo S F, Yang G Y, Qin H, Xiao L, and Jie W Q, Adv. Eng. Mater. 22 (2020) 9.

    Google Scholar 

  19. Nie J F, Metall. Mater. Trans. A 43A (2012) 3891.

    Article  Google Scholar 

  20. Wu D, Ma Y Q, Chen R S, and Ke W, J. Magnesium Alloys 2 (2014) 20.

    Article  CAS  Google Scholar 

  21. Peng L M, Fu P H, Li Z M, Wang Y X, and Jiang H Y, J. Mater. Sci. 49 (2014) 710.

    Article  Google Scholar 

  22. Song G L, and Stjohn D H, Journal of Light Metals 2 (2002) 1.

    Article  Google Scholar 

  23. Qian M, Stjohn D H, and Frost M T, Scr. Mater 46 (2002) 64.

    Google Scholar 

  24. Peng Q M, Huang Y, Jian M, Li Y, and Kainer K U, Intermetallics 19 (2011) 382.

    Article  CAS  Google Scholar 

  25. Zhu S M, Nie J F, Gibson M A, and Eastona M A, Scr. Mater. 77 (2014) 21.

    Article  CAS  Google Scholar 

  26. Xiao L, Yang G Y, Ma J Q, Qin H, Li J H, and Jie W Q, Mater. Charact, 168 (2020) 14.

    Article  Google Scholar 

  27. Gao X, Muddle B C, and Nie J F. Phil Mag Lett, 89 (2009) 33.

    Article  CAS  Google Scholar 

  28. Nodooshan H R, Liu W C, Wu G H, Alizadeh R, Mahmudi R, and Ding W J, J. Alloys Compd. 619 (2015) 826.

    Article  Google Scholar 

  29. Zheng J K, Luo R C, Zeng X Q, and Chen B, Mater. Des. 137 (2018) 316.

    Article  CAS  Google Scholar 

  30. Gao X, He S M, Zeng X Q, Peng L M, Ding W J, and Nie J F, Mater. Sci. Eng. A 431 (2006) 322.

    Article  Google Scholar 

  31. He S M, Zeng X Q, Peng L M, Gao X, Nie J F, and Ding W J, J. Alloys Compd. 421 (2006) 309.

    Article  CAS  Google Scholar 

  32. Kang Y H, Wang X X, Zhang N, Yan H, and Chen R S, Mater. Sci. Eng. A 689 (2017) 435.

    Article  CAS  Google Scholar 

  33. Luo A A, and Pekguleryuz M O, J. Mater. Sci. 29 (1994) 5259.

    Article  CAS  Google Scholar 

  34. Tang J, Huo Q H, Zhang Z R, Zhang Y X, Zhao S L, and Hashimoto A, J. Alloys Compd. 861 (2021) 11.

    Article  Google Scholar 

  35. Huo Q H, Ando D, Sutou Y, and Koike J, Mater. Sci. Eng. A 678 (2016) 235.

    Article  CAS  Google Scholar 

  36. Qin H, Yang G Y, Bai T, Ouyang S X, and Jie W Q. Mater. Lett, (2021) 304.

  37. Koike J, Kobayashi T, Mukai T, Watanabe H, Suzuki M, Maruyama K, and Higashi K, Acta Mater. 51 (2003) 205.

    Article  Google Scholar 

  38. Smola B, Stulikova I, Pelcova J, Mordike and B L, J. Alloys Compd. 378 (2004) 196.

    Article  CAS  Google Scholar 

  39. He S M, Zeng X Q, Peng L M, Gao X, and Nie J F, J. Alloys Compd. 427 (2007) 31.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Grant No. 2018YFB2002000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deming Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Zhang, D., Zhao, Z. et al. Effect of Heat Treatment on Microstructures and Mechanical Properties of Mg–5.5Gd–3.5Nd–0.5Zn–0.4Zr Alloy. Trans Indian Inst Met 75, 2883–2890 (2022). https://doi.org/10.1007/s12666-022-02646-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02646-x

Keywords

Navigation