Skip to main content
Log in

Dynamic Recrystallization and Grain Refinement of Fe-P-C-Si and Fe-P-C-Si-N Steels

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Grain refinement is an effective technique to improve the mechanical properties of steels. In the present work, single-pass hot compression experiments have been conducted on two different compositions of high phosphorous steels to study the microstructural evolution and ferrite grain refinement at various strain rates and deformation temperatures, i.e., 0.01-10 s−1 and 750-1050 °C, respectively. Optical metallography has been employed to understand the physical processes that take place during hot deformation process. The results indicate that when these compositions of high phosphorous steels are worked at relatively low temperatures in the intercritical regions, a ferrite grain size of 5-7 µm is obtained. It is observed that the grain size decreases with an increase in strain rate and with the decrease in deformation temperature. Based on the values of stress exponent (n) obtained in the present work, dislocation creep is identified as the deformation mechanism. The activation energies for deformation of these two types of high phosphorous steels have been calculated. The effect of the alloying elements on the stress–strain curve, microstructure, and grain refinement has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. P.J. Hurley and P.D. Hodgson, Formation of Ultra-fine Ferrite in Hot Rolled Strip: Potential Mechanisms for Grain Refinement, Mater. Sci. Eng. A, 2001, 302, p 206–214

    Article  Google Scholar 

  2. P.D. Hodgson, M.R. Hickson, and R.K. Gibbs, Ultrafine Ferrite in Low Carbon Steel, Scr. Mater., 1999, 40, p 1179–1184

    Article  Google Scholar 

  3. D.B. Santos, R.K. Bruzszek, P.C.M. Rodriguez, and E.V. Pereloma, Formation of Ultra-fine Ferrite Microstructure in Warm Rolled and Annealed C-Mn Steel, Mater. Sci. Eng. A, 2003, 346, p 189–195

    Article  Google Scholar 

  4. B.Q. Han and S. Yue, Processing of Ultrafine Ferrite Steels, J. Mater. Process. Technol., 2003, 136, p 100–104

    Article  Google Scholar 

  5. Y.D. Huang and L. Froyen, Important Factors to Obtain Homogeneous and Ultrafine Ferrite—Pearlite Microstructure in Low Carbon Steel, J. Mater. Process. Technol., 2002, 124, p 216–226

    Article  Google Scholar 

  6. S.C. Hong, S.H. Lim, K.J. Lee, D.H. Shin, and K.S. Lee, Effect of Undercooling of Austenite on Strain Induced Ferrite Transformation Behavior, ISIJ Int., 2003, 43, p 394–399

    Article  Google Scholar 

  7. B. Eghbali and A. Abdollah-zadeh, Influence of Deformation Temperature on the Ferrite Grain Refinement in a Low Carbon Nb–Ti Microalloyed Steel, J. Mater. Process. Technol., 2006, 180, p 44–48

    Article  Google Scholar 

  8. B. Eghbali and A. Abdollah-zadeh, The Influence of Thermomechanical Parameters in Ferrite Grain Refinement in a Low Carbon Nb-Microalloyed Steel, Scr. Mater., 2005, 53, p 41–45

    Article  Google Scholar 

  9. S. Saadatkia, H. Mirzadeh, and J. Cabrera, A Hot Deformation Behavior, Dynamic Recrystallization, and Physically-Based Constitutive Modeling of Plain Carbon Steels, Mater. Sci. Eng. A, 2015, 636, p 196–202

    Article  Google Scholar 

  10. H. Zhao, G. Liu, and L. Xu, A Rate-Controlling Mechanisms of Hot Deformation in a Medium Carbon Vanadium Microalloy Steel, Mater. Sci. Eng. A, 2013, 559, p 262–267

    Article  Google Scholar 

  11. H. Mirzadeh, J.M. Cabrera, J.M. Prado, and A. Najafizadeh, Hot Deformation Behavior of a Medium Carbon Microalloyed Steel, Mater. Sci. Eng. A, 2011, 528, p 3876–3882

    Article  Google Scholar 

  12. H. Wei, G. Liu, and M. Zhang, A Physically Based Constitutive Analysis to Predict Flow Stress of Medium Carbon and Vanadium Microalloyed Steels, Mater. Sci. Eng. A, 2014, 602, p 127–133

    Article  Google Scholar 

  13. Z. Akbari, H. Mirzadeh, and J. Cabrera, A Simple Constitutive Model for Predicting Flow Stress of Medium Carbon Microalloyed Steel During Hot Deformation, Mater. Des., 2015, 77, p 126–131

    Article  Google Scholar 

  14. B.D. Clarke and I.D. McIvor, Effect of Phosphorus on Microstructure and Strength of High Carbon Steel Rod. Ironmak, Steelmak., 1989, 16, p 335–344

    Google Scholar 

  15. R. Balasubramaniam, On the Corrosion Resistance of the Delhi Iron Pillar, Corros. Sci., 2000, 42, p 2013–2129

    Article  Google Scholar 

  16. R. Balasubramaniam, Delhi Iron Pillar—New Insights, Indian Institute of Advanced Study, Shimla, 2002

    Google Scholar 

  17. H. Qiu, T. Hanamura, and S. Torizuka, Influence of Grain Size on the Ductile Fracture Toughness of Ferritic Steel, ISIJ Int., 2014, 54, p 1958–1964

    Article  Google Scholar 

  18. S.I. Kim, S.H. Choi, and Y. Lee, Influence of Phosphorous and Boron on Dynamic Recrystallization and Microstructures of Hot-Rolled Interstitial Free Steel, Mater. Sci. Eng. A, 2005, 406, p 125–133

    Article  Google Scholar 

  19. C.M. Liu, K. Abiko, and H. Kimura, Effect of Silicon on the Grain Boundary Segregation of Phosphorus and the Phosphorus Induced Intergranular Fracture in High Purity Fe-Si-P Alloys, Strength of Metals and Alloys (ICSMA 8), Vol. 3, Proc. 8th Int. Conf. Strength Met. Alloy. Tampere, Finland, 22–26 Aug 1988 , P.O. Kettunen, T.K. Lepistö, and M.E. Lehtonen, Ed., Pergamon Press, Tampere, 1989, p 1101–1106

    Google Scholar 

  20. H. Erhart and H.J. Grabke, Site Competition in Grain Boundary Segregation of Phosphorus and Nitrogen in Iron, Scr. Metall., 1981, 15, p 531–534

    Article  Google Scholar 

  21. ASTM E112-13, Standard Test Methods for Determining Average Grain Size, ASTM Stand., West Conshohocken, 2014, p 1–28

    Google Scholar 

  22. M. Durand-Charre, Microstructure of Steels and Cast Irons, Springer, Berlin, 2004, p 265

    Book  Google Scholar 

  23. Y. Mehta, V.V. Dabhade, and G.P. Chaudhari, Metallography of Fe–P–C and Fe–P–C–Si–N Alloys, Metallogr. Microstruct. Anal., 2015, 4, p 488–496

    Article  Google Scholar 

  24. I. Weiss, T. Sakai, and J.J. Jonas, Effect of Test Method on Transition From Multiple to Single Peak Dynamic Recrystallization, Met. Sci., 1984, 18, p 77–84

    Article  Google Scholar 

  25. I. Weiss, P.J. Alvarado, G. Fitzsimons, and A.J. DeArdo, Grain Refinement and Coarsening During Dynamic Recrystallization in Plain Carbon Steel, Scr. Mater., 1983, 17, p 693–697

    Google Scholar 

  26. J.J. Sakai and T. Jonas, Overview Dynamic Recrystallization: Mechanical And Microstructural Considerations, Acta Metall., 1984, 32, p 189–209

    Article  Google Scholar 

  27. H. Mirzadeh, A. Najafizadeh, and M. Moazeny, Flow Curve Analysis of 17-4 PH Stainless Steel Under Hot Compression Test, Metall. Mater. Trans. A, 2009, 40A, p 2950–2958

    Article  Google Scholar 

  28. S.K. Rajput, M. Dikovits, G.P. Chaudhari, C. Poletti, F. Warchomicka, V. Pancholi et al., Physical Simulation of Hot Deformation and Microstructural Evolution of AISI, 1016 Steel Using Processing Maps, Mater. Sci. Eng. A, 2013, 587, p 291–300

    Article  Google Scholar 

  29. Y. Mehta, S.K. Rajput, V.V. Dabhade, and G.P. Chaudhari, Physical Simulation of Hot Deformation and Microstructural Evolution of Fe-0.05C-0.13P Steel, J. Mater. Eng. Perform., 2016, 25, p 1376–1383

    Article  Google Scholar 

  30. K.B. Gove and J.A. Charles, The High Temperature Hardness of Various Phases in Steel, Met. Technol., 1974, 1(1), p 279–283

    Article  Google Scholar 

  31. B. Eghbali and A. Abdollah-zadeh, Effect of Strain Rate on the Ferrite Grain Refinement in a Low Carbon Nb–Ti Microalloyed Steel During Low Temperature Deformation, J. Mater. Sci. Tech., 2005, 21, p 851–855

    Google Scholar 

  32. ASTM E1181-02, Standard Test Methods for Characterizing Duplex Grain Sizes, ASTM Stand., West Conshohocken, 2015, p 1–15

    Google Scholar 

  33. ASTM E562-11, Standard Test Method for Determining Volume Fraction by Systematic Manual Point Count, ASTM Stand., West Conshohocken, 2017, p 1–7

    Google Scholar 

  34. S.F. Medina and C.A. Hernandez, General Expression of the Zener–Hollomon Parameter as a Function of the Chemical Composition of Low Alloy and Microalloyed Steels, Acta Mater., 1996, 44, p 137–148

    Article  Google Scholar 

  35. C.M. Sellars and W.J. McTegart, Relationship Between Strength and Structure in Deformation at Elevated Temperatures, Mem. Sci. Rev. Met., 1966, 63, p 731–745

    Google Scholar 

  36. C.M. Sellars and W.J. McTegart, On the Mechanism of Hot Deformation, Acta Metall., 1966, 14, p 1136–1138

    Article  Google Scholar 

  37. H.J. McQueen, Elevated-Temperature Deformation at Forming Rates of 10−2 to 10 2 s−1, Metall. Mater. Trans. A, 2002, 33, p 345–362

    Article  Google Scholar 

  38. N.E. Dowling, S.P. Katakam, and R. Narayanasamy, Mechanical Behavior of Materials, 4th ed., Pearson, England, 2013, p 814

    Google Scholar 

  39. J.M. Cabrera, A.A.L. Omar, J.J. Jonas, and J.M. Prado, Modeling the Flow Behavior of a Medium Carbon Microalloyed Steel Under Hot Working Conditions, Metall. Mater. Trans. A, 1997, 28A, p 2233–2244

    Article  Google Scholar 

  40. H. Mirzadeh, J. Maria, and A. Najafizadeh, Constitutive Relationships for Hot Deformation of Austenite, Acta Mater., 2011, 59, p 6441–6448

    Article  Google Scholar 

  41. T.G. Langdon, An Analysis of Flow Mechanisms in High Temperature Creep and Superplasticity, Mater. Trans., 2005, 46, p 1951–1956

    Article  Google Scholar 

  42. H. Mirzadeh, Quantification of the Strengthening Effect of Reinforcements During Hot Deformation of Aluminum-Based Composites, Mater. Des., 2015, 65, p 80–82

    Article  Google Scholar 

  43. A.K. Mukherjee, An Examination of the Constitutive Equation for Elevated Temperature Plasticity, Mater. Sci. Eng. A, 2002, 322, p 1–22

    Article  Google Scholar 

  44. B. Verlinden, J. Driver, I. Samajdar, and R.D. Doherty, Thermo-Mechanical Processing of Metallic Materials, Vol 11, 1st ed., Pergamon, Oxford, 2007, p 75

    Google Scholar 

  45. S.U. Serajzadeh and A.K. Taheri, An Investigation on the Effect of Carbon and Silicon on Flow Behavior of Steel, Mater. Des., 2002, 23, p 2–7

    Article  Google Scholar 

  46. S. Serajzadeh and A.K. Taheri, An Investigation of the Silicon Role on Austenite Recrystallization, Mater. Lett., 2002, 56, p 984–989

    Article  Google Scholar 

  47. S. Cho, K. Kang, and J.J. Jonas, The Dynamic, Static and Metadynamic Recrystallization of a Nb-Microalloyed Steel, ISIJ Int., 2001, 41, p 63–69

    Article  Google Scholar 

  48. S. Kim, Y. Lee, D. Lee, and Y. Yoo, Modeling of AGS and Recrystallized Fraction of Microalloyed Medium Carbon Steel During Hot Deformation, Mater. Sci. Eng. A, 2003, 355, p 384–393

    Article  Google Scholar 

  49. S.K. Rajput, G.P. Chaudhari, and S.K. Nath, Characterization of Hot Deformation Behavior of a Low Carbon Steel Using Processing Maps, Constitutive Equations and Zener–Hollomon Parameter, J. Mater. Process. Technol., 2016, 237, p 113–125

    Article  Google Scholar 

Download references

Acknowledgments

Authors are grateful to Vaishnav Steel Private Limited, Muzaffarnagar, India, for providing the steel castings for research purposes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Rajput.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehta, Y., Rajput, S.K., Chaudhari, G.P. et al. Dynamic Recrystallization and Grain Refinement of Fe-P-C-Si and Fe-P-C-Si-N Steels. J. of Materi Eng and Perform 27, 4770–4782 (2018). https://doi.org/10.1007/s11665-018-3531-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3531-3

Keywords

Navigation