Skip to main content
Log in

Physical Simulation of Hot Deformation and Microstructural Evolution of Fe-0.05C-0.13P Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

High-phosphorus steels are important for structural applications where corrosion resistance is required and are subjected to hot deformation processing. Therefore, hot deformation behavior of Fe-0.05C-0.13P steel is studied by conducting hot compression tests in the temperature range 750-1050 °C after austenitization at 1050 °C for 10 s. The strain rates ranged from 0.001 to 10 s−1. Optical and scanning electron microscopy was performed to determine the microstructural evolution. EBSD measurement on selected samples was used to determine the microstructural changes in the ferrite phase. Processing windows were determined using modified dynamic material model in order to determine the safe hot working domains and these are correlated with the microstructural developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B.E. Hopkins and H.R. Tipler, The Effect of Phosphorus on the Tensile and Notch-Impact Properties of High-Purity Iron and Iron-Carbon Alloys, J. Iron Steel Inst., 1958, 188, p 218-237

    Google Scholar 

  2. J.W. Stewart, J.A. Charles, and E.R. Wallach, Iron-phosphorus-Carbon System, Part 1—Mechanical Properties of Low Carbon Iron-Phosphorus Alloys, Mater. Sci. Technol., 2000, 16, p 275–282

    Article  Google Scholar 

  3. G. Sahoo and R. Balasubramaniam, Mechanical Behavior of Novel Phosphoric Irons for Concrete Reinforcement Applications, Scripta Mater., 2007, 56, p 117–120

    Article  Google Scholar 

  4. G. Sahoo and R. Balasubramaniam, On the Corrosion Behaviour of Phosphoric irons in Simulated Concrete Pore Solution, Corros. Sci., 2008, 50, p 131–143

    Article  Google Scholar 

  5. S.I. Kim, S.H. Choi, and Y. Lee, Influence of Phosphorous and Boron on Dynamic Recrystallization and Microstructures of Hot-Rolled Interstitial Free Steel, Mater. Sci. Eng. A, 2005, 406, p 125–133

    Article  Google Scholar 

  6. M.F. Ashby and H.J. Frost, Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics, Pergamon Press, London, 1982, ISBN 978-0080293387

    Google Scholar 

  7. Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, and D.R. Barker, Modeling of Dynamic Material Behavior in Hot Deformation: Forging of Ti-6242, Metall. Mater. Trans. A, 1984, 15(10), p 1883–1892

    Article  Google Scholar 

  8. Y.V.R.K. Prasad, Author’s Reply: Dynamic Materials Model: Basis and Principles, Metall. Mater. Trans. A, 1996, 27, p 235–236

    Article  Google Scholar 

  9. S.V.S. Narayana Murty and B. Nageswara Rao, Ziegler’s Criterion on the Instability Regions in Processing Maps, Mater. Sci. Lett., 1998, 17, p 1203–1205

    Article  Google Scholar 

  10. S.V.S. Narayana, B. Murty, and B.P. Nageswara Rao, Kashyap, Development and Validation of a Processing Map for Zirconium Alloys, Modell. Simul. Mater. Eng., 2002, 10, p 503–520

    Article  Google Scholar 

  11. S.V.S. Narayana Murty, B. Nageswara Rao, and B.P. Kashyap, on the Hot Working Characteristics of 6061Al-SiC and 6061-Al2O3 Particulate Reinforced Metal Matrix Composites, Comput. Sci. Technol., 2003, 63, p 119–135

    Article  Google Scholar 

  12. S.V.S. Murty, B.N. Rao, and B.P. Kashyap, On the Hot Working Characteristics of 2014 Al-20 vol% Al2O3 Metal Matrix Composite, J. Mater. Process. Technol., 2005, 166, p 279–285

    Article  Google Scholar 

  13. J.K. Chakravartty, G.K. Dey, S. Banerjee, and Y.V.R.K. Prasad, Characterization of Hot Deformation Behaviour of Zr-2.5Nb-0.5Cu Using Processing Maps, J. Nucl. Mater., 1995, 218, p 247–255

    Article  Google Scholar 

  14. S.K. Rajput, M. Dikovits, G.P. Chaudhari, S.K. Nath, C. Poletti, F. Warchomicka, V. Pancholi, and S.K. Nath, Physical simulation of hot deformation and microstructural evolution of AISI, 1016 steel using processing maps, Mat Sci Eng A-Struct, 2013, 587, p 291–300

    Article  Google Scholar 

  15. H. Ziegler, E. Becker, B. Budiansky, H.A. Lauwerier, and T. Koiter, An Introduction to Thermodynamics, 2nd ed., North-Holland, New York, 1983

    Google Scholar 

  16. F. Montheillet, J.J. Jonas, and K.W. Neale, Modeling of Dynamic Material Behavior: A Critical Evaluation of the Dissipator Power Co-content Approach, Metall. Mater. Trans. A, 1996, 27, p 232–235

    Article  Google Scholar 

  17. S.K. Rajput, G.P. Chaudhari, and S.K. Nath, Physical Simulation of Hot Deformation of Low-Carbon Ti-Nb Micro-alloyed Steel and Microstructural Studies, J. Mater. Eng. Perform., 2014, 23(8), p 2930–2942

    Article  Google Scholar 

  18. C.M. Sellars and W.J. McG, Tegart, On the Mechanism of Hot Deformation, Acta Metall., 1966, 14, p 1136–1138

    Article  Google Scholar 

  19. J. Zhang, H. Di, X. Wanga, Y. Cao, J. Zhang, and T. Ma, Constitutive Analysis of the Hot Deformation Behavior of Fe–23Mn–2Al–0.2C Twinning Induced Plasticity Steel in Consideration of Strain, Mater. Design, 2013, 44, p 354–364

    Article  Google Scholar 

  20. H.J. McQueen, S. Yue, N.D. Ryan, and E. Fry, Hot Working Characteristics of Steels in Austenitic State, J. Mater. Process. Technol., 1995, 53, p 293–310

    Article  Google Scholar 

  21. H.J. McQueen, Elevated-Temperature Deformation at Forming Rates of 10−2 to 102 s−1, Metall. Mater. Trans. A, 2002, 33, p 345–362

    Article  Google Scholar 

  22. K.P. Rao, Y.K.D.V. Prasad, and E.B. Hawbolt, Hot Deformation Studies on a Low-Carbon Steel: Part 1-Flow Curves and the Constitutive Relationship, J. Mater. Process. Technol., 1996, 56, p 897–907

    Article  Google Scholar 

  23. Y.D. Huang and L. Froyen, Important Factors to Obtain Homogeneous and Ultrafine Ferrite–Pearlite Microstructure in Low Carbon Steel, J. Mater. Process. Technol., 2002, 124, p 216–226

    Article  Google Scholar 

  24. R.L. Goetz and S.L. Semiatin, The Adiabatic Correction Factor for Deformation Heating During the Uniaxial Compression Test, J. Mater. Eng. Perform., 2001, 10(6), p 710–717

    Article  Google Scholar 

  25. N. Tsuji, B.Y. Matsu, and Y. Saito, Dynamic Recrystallization of Ferrite in Interstitial Free Steel, Scripta Mater., 1997, 37, p 477–484

    Article  Google Scholar 

  26. H. Dong, D. Cai, Z. Zhao, Z. Wang, Y. Wang, Q. Yang, and B. Liao, Investigation on Static Softening Behaviors of a Low Carbon Steel Under Ferritic Rolling Condition, J. Mater. Eng. Perform., 2010, 19(2), p 151–154

    Article  Google Scholar 

  27. J.W. Stewart, J.A. Charles, and E.R. Wallach, Iron–Phosphorus–Carbon System, Part 3 – Metallography of Low Carbon Iron–Phosphorus Alloys, Mater Sci Tech Ser, 2000, 16, p 291–303

    Article  Google Scholar 

  28. W.D. Callister, Material Science and Engineering—An Introduction, 2nd ed., Wiley, New Delhi, 2014, p 261

    Google Scholar 

  29. H. Erhart and H.J. Grabke, Site Competition in Grain Boundary Segregation of Phosphorus and Nitrogen in Iron, Scripta Metall Mater, 1981, 15, p 531–534

    Article  Google Scholar 

  30. K.B. Gove and J.A. Charles, Met. Technol., 1974, 1, p 279–283

    Article  Google Scholar 

  31. S.M. Abbasi and A. Momeni, Hot Working Behavior of Fe–29Ni–17Co Analyzed by Mechanical Testing and Processing Map, Mater. Sci. Eng. A, 2012, 552, p 330–335

    Article  Google Scholar 

  32. S.V.S. Narayana Murty, B. Nageswara Rao, and B.P. Kashyap, Instability Criteria for Hot Deformation of Materials, Int. Mater. Rev., 2000, 45, p 15–26

    Article  Google Scholar 

  33. R. Vogel, On the System Iron-Phosphorus-Carbon, Arch Eisenhuttenwes., 1929, 3(5), p 369–371(in German)

    Google Scholar 

  34. N.E. Dowling, Mechanical Behaviour of Materials: Engineering Methods for Deformation, Fracture and Fatigue, 3rd ed., Pearsons Prentice Hall, NJ, 2007

    Google Scholar 

  35. J.M. Cabrera, A.A.L. Omar, J.J. Jonas, and J.M. Prado, Modeling the Flow Behavior of a Medium Carbon Microalloyed Steel Under Hot Working Conditions, Metall. Mater. Trans. A, 1997, 28, p 2233–2244

    Article  Google Scholar 

  36. T.E. Mitchell, J.P. Hirth, and A. Misra, Apparent Activation Energy and Stress Exponent in Materials with a Peierls Stress, Acta Mater., 2002, 50, p 1087–1093

    Article  Google Scholar 

  37. C.W. Siyasiya and W.E. Stumpf, Constitutive Constants for Hot Working of Steels: The Critical Strain for Dynamic Recrystallisation in C-Mn Steels, J. Mater. Eng. Perform., 2015, 24(1), p 468–476

    Article  Google Scholar 

  38. R. Bobbili and V. Madhu, An Investigation into Hot Deformation Characteristics and Processing Maps of High-Strength Armor Steel, J. Mater. Eng. Perform., 2015, 24, p 4728–4735

    Article  Google Scholar 

Download references

Acknowledgment

The authors wish to thank Ajay Aggarwal, Vaishnav Steel Private Limited, Muzaffarnagar, India for making the castings of the Fe-0.05C-0.13P alloy for research purpose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yashwant Mehta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehta, Y., Rajput, S.K., Dabhade, V.V. et al. Physical Simulation of Hot Deformation and Microstructural Evolution of Fe-0.05C-0.13P Steel. J. of Materi Eng and Perform 25, 1376–1383 (2016). https://doi.org/10.1007/s11665-016-1992-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-1992-9

Keywords

Navigation