Advertisement

Nanoindentation Stress–Strain for Fracture Analysis and Computational Modeling for Hardness and Modulus

  • A. S. BhattacharyyaEmail author
  • R. P. Kumar
  • S. Priyadarshi
  • Sonu
  • S. Shivam
  • S. Anshu
Article

Abstract

Stress–Strain plots based on nanoindentation load–depth curves were obtained to study phenomena like internal fracture and ductile to brittle transitions. Fracture phenomena during the indentation process were analyzed based on the stress–strain plots. A transition from ductile to brittle fracture was observed on increasing the depth or load of indenter penetration. A new approach with shape factors in the fracture studies based on radial crack branching and micro-cracking was done. Hardness and modulus plots were fitted with polynomials. The fitting parameters were varied to obtain different hardness and modulus responses.

Keywords

fracture load–depth nanoindentation stress–strain 

Notes

Acknowledgments

The authors acknowledge Dr. S. K. Mishra for carrying out the experimental work at CSIR-National Metallurgical Laboratory, Jamshedpur. The article is self-archived in arXiv.org (Ref 26).

References

  1. 1.
    A.C. Fischer-Cripps, Nanoindentation, Springer, NewYork, 2004CrossRefGoogle Scholar
  2. 2.
    W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7, p 1564CrossRefGoogle Scholar
  3. 3.
    J. Malzbender, J.M.J. den Toonder, A.R. Balkenende, and G. de With, Measuring Mechanical Properties of Coatings: A Methodology Applied to Nano-Particle-Filled sol–gel Coatings on Glass, Mater. Sci. Eng. Rep., 2002, 36, p 47CrossRefGoogle Scholar
  4. 4.
    R. Abram, D. Chrobak, and R. Nowak, Origin of a Nanoindentation Pop-in Event in Silicon Crystal, Phys. Rev. Lett., 2017, 118, p 095502CrossRefGoogle Scholar
  5. 5.
    S. Wong, B. Haberl, J.S. Williams, and J.E. Bradby, The Influence of Hold Time on the Onset of Plastic Deformation in Silicon, J. Appl. Phys., 2015, 118, p 245904CrossRefGoogle Scholar
  6. 6.
    A.S. Bhattacharyya and S.K. Mishra, Raman Studies on Nanocomposite Silicon Carbonitride Thin Film Deposited by RF Magnetron Sputtering at Different Substrate Temperatures, J. Raman Spectrosc., 2010, 41, p 1234–1239CrossRefGoogle Scholar
  7. 7.
    A.S. Bhattacharyya, S.K. Mishra, and S. Mukherjee, Correlation of Structure and Hardness of RF Magnetron Sputtered Silicon Carbonitride Films, J. Vac. Sci. Technol. A, 2010, 28, p 505–509CrossRefGoogle Scholar
  8. 8.
    A.S. Bhattacharyya, S.K. Mishra, S. Mukherjee, and G.C. Das, A Comparative Study of Si-C-N Films on Different Substrates Grown by RF Magnetron Sputtering, J. Alloys Compd., 2009, 478, p 474–478CrossRefGoogle Scholar
  9. 9.
    A.S. Bhattacharyya, G.C. Das, S. Mukherjee, and S.K. Mishra, Effect of Radio Frequency and Direct Current Modes of Deposition on Protective Metallurgical Hard Silicon Carbon Nitride Coatings by Magnetron Sputtering, Vacuum, 2009, 83, p 1464–1469CrossRefGoogle Scholar
  10. 10.
    W.C. Oliver and G.M. Pharr, Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology, J. Mater. Res., 2004, 19, p 3CrossRefGoogle Scholar
  11. 11.
    Z. Cao and X. Zhang, Nanoindentation Stress–Strain Curves of Plasma-Enhanced Chemical Vapor Deposited Silicon Oxide Thin Films, Thin Solid Films, 2008, 516, p 1941–1951CrossRefGoogle Scholar
  12. 12.
    S. Zhang, H.L. Wang, S.-E. Ong, D. Sun, and X.L. Bui, Hard yet Tough Nanocomposite Coatings—Present Status and Future Trends, Plasma Process. Polym., 2007, 4, p 219–228CrossRefGoogle Scholar
  13. 13.
    A.S. Bhattacharyya, R.P. Kumar, V. Ranjan, and G. Kumar, Nanoindentation and Scratch test of Thin Film Energy Materials, Curr. Smart Mater., 2017, 2, p 39–43Google Scholar
  14. 14.
    A.S. Bhattacharyya and S.K. Mishra, Micro/Nanomechanical Behavior of Magnetron Sputtered Si-C-N Coatings Through Nanoindentation and Scratch Tests, J. Micromech. Microeng., 2011, 21, p 015011CrossRefGoogle Scholar
  15. 15.
    E. Mart´ınez, J. Romero, A. Lousa, and J. Esteve, Nanoindentation Stress–Strain Curves as a Method for Thin-Film Complete Mechanical Characterization: Application to Nanometric CrN/Cr Multilayer Coatings, Appl. Phys. A, 2003, 77, p 419–426.  https://doi.org/10.1007/s00339-002-1669-0 CrossRefGoogle Scholar
  16. 16.
    S.K. Mishra, A.S. Bhattacharyya, P. Mahato, and L.C. Pathak, Multicomponent TiSiBC Superhard and Tough Composite Coatings by Magnetron Sputtering, Surface Coat. Technol., 2012, 207, p 19–23CrossRefGoogle Scholar
  17. 17.
    S.J. Bull, Nanoindentation of Coatings, J. Phys. D Appl. Phys., 2005, 38, p R393–R413CrossRefGoogle Scholar
  18. 18.
    J.M.J. den Toonder, J. Malzbender, G. de With, and R. Balkenende, Fracture Toughness and Adhesion Energy of Sol-Gel Coatings on Glass, J. Mater. Res., 2002, 17, p 224CrossRefGoogle Scholar
  19. 19.
    A.S. Bhattacharyya, P. Kumar, N. Rajak, R.P. Kumar, A. Sharma, G. Acharya, and V. Ranjan, Analyzing Time on Sample during Nanoindentation, Mater. Sci. Res. India, 2016, 13(2), p 74–79CrossRefGoogle Scholar
  20. 20.
    Z. Burghard, Behaviour of glasses and polymer-derived amorphous ceramics under contact stress, PhD-Thesis, Max-Planck Institute for Metals Research & University of Stuttgart GermanyGoogle Scholar
  21. 21.
    Z.D. Sha, Q. Wan, Q.X. Pei, S.S. Quek, Z.S. Liu, Y.W. Zhang, and V.B. Shenoy, On the Failure Load and Mechanism of Polycrystalline Graphene by Nanoindentation, Sci. Rep., 2014, 4, p 7437CrossRefGoogle Scholar
  22. 22.
    N. Cuadrado, J. Seuba, D. Casellas, M. Anglada, and E. Jiménez-Piqué, Geometry of Nanoindentation Cube-Corner Cracks Observed by FIB Tomography: Implication for Fracture Resistance Estimation, J. Eur. Ceram. Soc., 2015, 35, p 2949–2955CrossRefGoogle Scholar
  23. 23.
    A.S. Bhattacharyya, S.K. Mishra, G.C. Das, and S. Mukherjee, Hot Properties, Eur. Coat. J., 2009, 3, p 108–114Google Scholar
  24. 24.
    Alireza Moradkhani, Hamidreza Baharvandi, Mehdi Tajdari, Hamidreza Latifi, and J. Martikainen, Determination of Fracture Toughness Using the Area of Micro-Crack Tracks Left in Brittle Materials by Vickers Indentation Test, J. Adv. Ceram., 2013, 2(1), p 87–102CrossRefGoogle Scholar
  25. 25.
    S.K. Mishra and A.S. Bhattacharyya, Adhesion and Indentation Fracture Behavior of Silicon Carbonitride Nanocomposite Coatings Deposited by Magnetron Sputtering, Silicon-based Nanomaterials, Springer Series in Materials Science, chap. 10, vol. 187, Springer, New York, 2013, p 215–241Google Scholar
  26. 26.
    A.S.Bhattacharyya, S Priyadarshi, S. Sonu, S. Shivam, and S. Anshu, Nanoindentation Stress–Strain for Fracture Analysis and Computational Modeling for Hardness and Modulus, arXiv:1704.04525 [cond-mat.mtrl-sci]

Copyright information

© ASM International 2018

Authors and Affiliations

  • A. S. Bhattacharyya
    • 1
    Email author
  • R. P. Kumar
    • 1
  • S. Priyadarshi
    • 1
  • Sonu
    • 1
  • S. Shivam
    • 1
  • S. Anshu
    • 1
  1. 1.Centre for Nanotechnology, Centre of Excellence in Green and Efficient Energy Technology (CoE-GEET)Central University of JharkhandBrambe, RanchiIndia

Personalised recommendations