Skip to main content
Log in

Inverse Thermal Analysis of Alloy 690 Laser and Hybrid Laser–GMA Welds Using Solidification-Boundary Constraints

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

An inverse thermal analysis of Alloy 690 laser and hybrid laser–GMA welds is presented that uses numerical–analytical basis functions and boundary constraints based on measured solidification cross sections. In particular, the inverse analysis procedure uses three-dimensional constraint conditions such that two-dimensional projections of calculated solidification boundaries are constrained to map within experimentally measured solidification cross sections. Temperature histories calculated by this analysis are input data for computational procedures that predict solid-state phase transformations and mechanical response. These temperature histories can be used for inverse thermal analysis of welds corresponding to other welding processes whose process conditions are within similar regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. T. Allen, J. Busby, M. Meyer, and D. Petti, Materials Challenges for Nuclear Systems, Mater. Today, 2010, 13(12), p 14–23

    Article  Google Scholar 

  2. J.J. Blecher, T.A. Palmer, and T. Debroy, Porosity in Thick Section Alloy 690 Welds—Experiments, Modeling, Mechanism, and Remedy, Weld. Res., 2016, 95, p 17–26

    Google Scholar 

  3. A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation, SIAM, Philadelphia, 2005

    Book  Google Scholar 

  4. C.R. Vogel, Computational Methods for Inverse Problems, SIAM, Philadelphia, 2002

    Book  Google Scholar 

  5. A.G. Ramm, Inverse Problems, Mathematical and Analytical Techniques with Applications to Engineering, Springer Science, New York, 2005

    Google Scholar 

  6. J.V. Beck, B. Blackwell, and C.R. St, Clair, Inverse Heat Conduction: IlI-Posed Problems, Wiley Interscience, New York, 1995

    Google Scholar 

  7. O.M. Alifanov, Inverse Heat Transfer Problems, Springer, New York, 1994

    Book  Google Scholar 

  8. M.N. Ozisik and H.R.B. Orlande, Inverse Heat Transfer, Fundamentals and Applications, Taylor and Francis, New York, 2000

    Google Scholar 

  9. K. Kurpisz and A.J. Nowak, Inverse Thermal Problems, Computational Mechanics Publications, Boston, 1995

    Google Scholar 

  10. J.V. Beck, in Inverse Problems in Heat Transfer with Application to Solidification and Welding, ed. by V. M. Rappaz, M.R. Ozgu and K.W. Mahin. Modeling of Casting, Welding and Advanced Solidification Processes (The Minerals, Metals and Materials Society, Pittsburgh, 1991), p. 427–437.

  11. J.V. Beck, in Inverse Problems in Heat Transfer, ed. by G.E. Tupholme, A.S. Wood. Mathematics of Heat Transfer (Clarendon Press, Wotton-under-Edge, 1998), p. 13–24.

  12. A.N. Tikhonov, Inverse Problems in Heat Conduction, J. Eng. Phys., 1975, 29(1), p 816–820

    Article  Google Scholar 

  13. O.M. Alifanov, Solution of an Inverse Problem of Heat-Conduction by Iterative Methods, J. Eng. Phys., 1974, 26(4), p 471–476

    Article  Google Scholar 

  14. O.M. Alifanov and V.Y. Mikhailov, Solution of the Overdetermined Inverse Problem of Thermal Conductivity Involving Inaccurate Data, High Temp., 1985, 23(1), p 112–117

    Google Scholar 

  15. E.A. Artyukhin and A.V. Nenarokomov, Coefficient Inverse Heat Conduction Problem, J. Eng. Phys., 1988, 53, p 1085–1090

    Article  Google Scholar 

  16. T.J. Martin and G.S. Dulikravich, Inverse Determination of Steady Convective Local Heat Transfer Coefficients, ASME J. Heat Transfer, 1998, 120, p 328–334

    Article  Google Scholar 

  17. S.G. Lambrakos and S.G. Michopoulos, Algorithms for Inverse Analysis of Heat Deposition Processes. Mathematical Modelling of Weld Phenomena, Volume 8, 847, Published by Verlag der Technischen Universite Graz, Austria (2007).

  18. S.G. Lambrakos and J.O. Milewski, Analysis of Welding and Heat Deposition Processes using an Inverse-Problem Approach, Mathematical Modelling of Weld Phenomena, 7, 1025, Publishied by Verlag der Technischen Universite Graz, Austria, 2005, p. 1025–1055.

  19. S.G. Lambrakos, Inverse Thermal Analysis of 304L Stainless Steel Laser Welds, J. Mater. Eng. And Perform., 2013, 22(8), p 2141

    Google Scholar 

  20. S.G. Lambrakos, Inverse Thermal Analysis of Stainless Steel Deep-Penetration Welds Using Volumetric Constraints. J. Mater. Eng. Perform. 23(6), 2219–2232. doi:10.1007/s11665-014-1023-7.

  21. S.G. Lambrakos, Inverse Thermal Analysis of Welds Using Multiple Constraints and Relaxed Parameter Optimization, J. Mater. Eng. Perform., 2015, 24(8), p 2925–2936

    Article  Google Scholar 

  22. D. Rosenthal, The Theory of Moving Sources of Heat and its Application to Metal Treatments, Trans. ASME, 1946, 68, p 849–866

    Google Scholar 

  23. J. Goldak, A. Chakravarti, and M. Bibby, A New Finite Element Model for Welding Heat Source, Metall. Trans. B, 1984, 15, p 299–305

    Article  Google Scholar 

  24. R.O. Myhr and O. Grong, Acta Metall. Mater. 38, 449–460 (1990).

  25. O. Grong, Materials Modelling Series, Metallurgical Modelling of Welding, Vol Chapter 2, 2nd ed., H.K.D.H. Bhadeshia, Ed., The Institute of Materials, London, 1997, p 1–115

    Google Scholar 

  26. R.C. Reed and H.K.D.H. Bhadeshia, A Simple Model For Multipass Welds, Acta Metall. Mater., 1994, 42(11), p 3663–3678

    Article  Google Scholar 

  27. V.A. Karkhin, P.N. Homich and V.G. Michailov, “Models for Volume Heat Sources and Functional-Analytic Technique for Calculating the Temperature Fields in Butt Welding, ‘Mathematical Modelling of Weld Phenomena,’ Volume 8, 847, Published by Verlag der Technischen Universite Graz, Austria (2007).

  28. I.S. Leoveanu, G. Zgura and D. Birsan, “Modeling the Heat and Fluid Flow in the Welded Pool,” Bulletin of the Transsilvania University of Brasov, Vol. 3, pp. 363–368, ISSN 1223-9631 (2007).

  29. I.S. Leoveanu and G. Zgura, in Modelling the Heat and Fluid Flow in the Welded Pool from High Power Arc Sources, ed. by C. Lee, J-B. Lee, D-H. Park, S-J. Na. Materials Science Forum, Vols. 580–582, pp. 443–446 (2008).

  30. S.G. Lambrakos, Parametric Modeling of Welding Processes Using Numerical-Analytical Basis Functions and Equivalent Scource Distributions, J. Mater. Eng. Perform., 2016, 25(4), p 1360–1375

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by a Naval Research Laboratory (NRL) internal core program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Lambrakos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lambrakos, S.G. Inverse Thermal Analysis of Alloy 690 Laser and Hybrid Laser–GMA Welds Using Solidification-Boundary Constraints. J. of Materi Eng and Perform 26, 3877–3891 (2017). https://doi.org/10.1007/s11665-017-2838-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2838-9

Keywords

Navigation