Skip to main content
Log in

Mitigation of Stress Corrosion Cracking Susceptibility of Machined 304L Stainless Steel Through Laser Peening

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The paper describes an experimental study aimed at suppressing stress corrosion cracking susceptibility of machined 304L stainless steel specimens through laser shock peening. The study also evaluates a new approach of oblique laser shock peening to suppress stress corrosion cracking susceptibility of internal surface of type 304L stainless steel tube. The results of the study, performed with an indigenously developed 2.5 J/7 ns Nd:YAG laser, demonstrated that laser shock peening effectively suppresses chloride stress corrosion cracking susceptibility of machined surface of type 304L stainless steel. In the investigated range of incident laser power density (3.2-6.4 GW/cm2), machined specimens peened with power density of 4.5 and 6.4 GW/cm2 displayed lower stress corrosion cracking susceptibility considerably than those treated with 3.2 and 3.6 GW/cm2 in boiling magnesium chloride test. Oblique laser shock peening, performed on machined internal surface of a type 304L stainless steel tube (OD = 111 mm; ID = 101 mm), was successful in introducing residual compressive surface stresses which brought about significant suppression of its stress corrosion cracking susceptibility. The technique of oblique laser shock peening, in spite of its inherent limitations on the length of peened region being limited by tube internal diameter and the need for access from both the sides, presents a simplified approach for peening internal surface of small tubular components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. J.R. Davis, Ed., Stainless Steels, ASM Specialty Handbook, ASM International, Materials Park, OH, 1999, p 169–173

    Google Scholar 

  2. Z. Feng, X. Cheng, C. Dong, L. Xu, and X. Li, Passivity of 316L Stainless Steel in Borate Buffer Solution Studied by Mott-Schottky Analysis, Atomic Absorption Spectrometry and X-Ray Photoelectron Spectroscopy, Corros. Sci., 2010, 52(11), p 3646–3653

    Article  Google Scholar 

  3. X. Cheng, Z. Feng, C. Li, C. Dong, and X. Li, Investigation of Oxide Film Formation on 316L Stainless Steel in High-Temperature Aqueous Environments, Electrochim. Acta, 2011, 56(17), p 5860–5865

    Article  Google Scholar 

  4. H.S. Khatak and B. Raj, Ed., Corrosion of Austenitic Stainless Steels: Mechanism, Mitigation and Monitoring, Woodhead Publishing, Cambirdige, 2002, p 74–139

    Book  Google Scholar 

  5. D. Féron and J.-M. Olive, Ed., Corrosion Issues in Light Water Reactors—Stress Corrosion Cracking, 1st ed., Woodhead Publishing, Cambridge, 2007

    Google Scholar 

  6. Stress Corrosion Cracking in Light Water Reactors: Good Practices and Lessons Learned, IAEA Nuclear Energy Series, NP-T-3.13, 2011, International Atomic Energy Agency, Vienna.

  7. M. Nakahara, Preventing Stress Corrosion Cracking of Austenitic Stainless Steels in Chemical Plants, NiDi Technical Series 10066, Nickel Development Institute, http://www.nickelinstitute.org/~/Media/Files/TechnicalLiterature/PreventingStress_CorrosionCrackingofAusteniticStainlessSteelsinChemicalPlants_10066_.pdf, Accessed on 20.01.2014.

  8. J. Esmacher, Stress Corrosion Cracking in Boilers and Cooling Water Systems, Stress Corrosion Cracking—Theory and Practice, V.S. Raja and T. Shoji, Ed., Woodhead Publishing, Philadelphia, 2011, p 537–607

    Google Scholar 

  9. J. Isselin, A. Kai, K. Sakaguchi, and T. Shoji, Assessment of the Effects of Cold Work on Crack Initiation in a Light Water Environment Using the Small-Punch Test, Metall. Mater. Trans., 2008, 39A, p 1099–1108

    Article  Google Scholar 

  10. P.L. Andresen and M.M. Morra, IGSCC of Non-sensitized Stainless Steels in High Temperature Water, J. Nucl. Mater., 2008, 383, p 97–111

    Article  Google Scholar 

  11. R. Ishibashi and H. Anzai, CD Proceeding of Environment Assisted Cracking, December 17-19, Sendai, 2007

  12. Y. Sueishi, A. Kohyama, H. Kinoshita, M. Narui, and K. Fukumoto, Microstructure and Nano-hardness Analyses of Stress Corrosion Cracking Utilizing 316L Core Shroud of BWR Power Reactors, Fusion Eng. Des., 2006, 81, p 1099–1103

    Article  Google Scholar 

  13. M. Koshiishi, J. Kuniya, and Z. Sagawa, CD Proceeding of Environment Assisted Cracking, December 17–19, Sendai, 2007.

  14. S. Ghosh, V.P.S. Rana, V. Kain, V. Mittal, and S.K. Baveja, Role of Residual Stresses Induced by Industrial Fabrication on Stress Corrosion Cracking Susceptibility of Austenitic Stainless Steel, Mater. Des., 2011, 32, p 3823–3831

    Article  Google Scholar 

  15. K.R. Trethewey, Some Observations on the Current Status in the Understanding of Stress-Corrosion Cracking of Stainless Steels, Mater. Des., 2008, 29, p 501–507

    Article  Google Scholar 

  16. Effect of Surface Working on the Microstructure and Electrochemical Behaviour of Stainless Steel, http://shodhganga.inflibnet.ac.in/bitstream/10603/11620/11/11_chapter%206.pdf, Accessed on 25.11.2014.

  17. A. Turnbull, K. Mingard, J.D. Lord, B. Roebuck, D.R. Tice, K.J. Mottershead, N.D. Fairweather, and A.K. Bradbury, Sensitivity of Stress Corrosion Cracking of Stainless Steel to Surface Machining and Grinding Procedure, Corros. Sci., 2011, 53, p 3398–3415

    Article  Google Scholar 

  18. S. Suzuki, K. Takamori, K. Kumagai, A. Sakashita, N. Yamashita, C. Shitara, and Y. Okamura, Stress Corrosion Cracking in Low Carbon Stainless Steel Components in BWRs, E-J. Adv. Maint., 2009, 1, p 1–29

    Google Scholar 

  19. S. Ghosh and V. Kain, Microstructural Changes in AISI, 304 Stainless Steel Due to Surface Machining: Effect on Its Susceptibility to Chloride Stress Corrosion Cracking, J. Nucl. Mater., 2010, 402, p 62–67

    Article  Google Scholar 

  20. S. Ghosh and V. Kain, Effect of Surface Machining and Cold Working on the Ambient Temperature Chloride Stress Corrosion Cracking Susceptibility of AISI, 304L Stainless Steel, Mater. Sci. Eng. A, 2010, 527, p 679–683

    Article  Google Scholar 

  21. S.G. Acharyya, A. Khandelwal, V. Kain, and I. Samajdar, Surface Working of 304L Stainless Steel: Impact on Microstructure, Electrochemical Behaviour and SCC Resistance, Mater. Charact., 2012, 72, p 68–76

    Article  Google Scholar 

  22. T.M. Yue, C.F. Dong, L.J. Yan, and H.C. Man, The Effect of Laser Surface Treatment on Stress Corrosion Cracking Behaviour of 7075 Aluminium Alloy, Mater. Lett., 2004, 58, p 630–635

    Article  Google Scholar 

  23. T.M. Yue, L.J. Yan, and C.P. Chan, Stress Corrosion Cracking Behavior of Nd:YAG Laser-Treated Aluminum Alloy 7075, Appl. Surf. Sci., 2006, 252, p 5026–5034

    Article  Google Scholar 

  24. Jeong-Hun Suh, Jin-Koog Shin, Suk-Joong L. Kang, Yun-Soo Lim, Il-Hiun Kuk, and Joung-Soo Kim, Investigation of IGSCC Behavior of Sensitized and Laser-Surface-Melted Alloy 600, Mater. Sci. Eng. A, 1998, 254, p 67–75

    Article  Google Scholar 

  25. R.K. Gupta, R. Sundar, B.S. Kumar, P. Ganesh, R. Kaul, K. Ranganathan, K.S. Bindra, V. Kain, S.M. Oak, and L.M. Kukreja, A Hybrid Laser Surface Treatment Scheme for Rejuvenation of Stress Corrosion Cracking Damaged Type 304L Stainless Steel, J. Mater. Eng. Perf., 2015, 24, p 2569–2576

    Article  Google Scholar 

  26. R. Fabbro, P. Peyre, L. Berthe, and X. Scherpereel, Physics and Applications of Laser Shock Processing, J. Laser. Appl., 1998, 10, p 265–279

    Article  Google Scholar 

  27. L. Berthe, P. Peyre, X. Scherpereel, R. Fabbro, and M. Jeandin, Laser Shock Surface Processing of Materials, Laser in Surface Engineering, Surface Engineering Series, Vol 1, N.B. Dahotre, Ed., ASM International, Materials Park, OH, 1998, p 465–504

    Google Scholar 

  28. Y. Zhang, J. You, J. Lu, C. Cui, Y. Jiang, and X. Ren, Effects of Laser Shock Processing on Stress Corrosion Cracking Susceptibility of AZ31B Magnesium Alloy, Surf. Coat. Technol., 2010, 204, p 3947–3953

    Article  Google Scholar 

  29. P. Peyre, X. Scherpereel, L. Berthe, C. Carboni, R. Fabbro, G. Béranger, and C. Lemaitre, Surface Modifications Induced in 316L Steel by Laser Peening and Shot-Peening. Influence on Pitting Corrosion Resistance, Mater. Sci. Eng. A, 2000, 280, p 294–302

    Article  Google Scholar 

  30. J.Z. Lu, K.Y. Luo, D.K. Yang, X.N. Cheng, J.L. Hu, F.Z. Dai, H. Qi, L. Zhang, J.S. Zhong, Q.W. Wang, and Y.K. Zhang, Effects of Laser Peening on Stress Corrosion Cracking (SCC) of ANSI, 304 Austenitic Stainless Steel, Corros. Sci., 2012, 60, p 145–152

    Article  Google Scholar 

  31. Y. Sano, M. Obata, T. Kubo, N. Mukai, M. Yoda, K. Masaki, and Y. Ochi, Retardation of Crack Initiation and Growth in Austenitic Stainless Steels by Laser Peening Without Protective Coating, Mater. Sci. Eng. A, 2006, 417, p 334–340

    Article  Google Scholar 

  32. M. Yoda and B. Newton, Underwater Laser Peeing, Welding and Repair Technology for Power Plants, Eighth Int. EPRI Conf., June 18-20, Fort Myers, Florida, 2008

  33. A.D. Evans, A. King, T. Pirling, G. Bruno, and P. J. Withers, The Effect of Incidence Effect of Incidence Angle on Residual Stress State in Laser-Peened Ti-6AI-4V Plate, Proc. 9th Int. Conf. on Shot Peening: ICSP9, Sept. 6-9, 2005, Paris, 454-459, Document No. 2005124.

  34. P. Ganesh, R. Sunder, H. Kumar, R. Kaul, K. Ranagnathan, P. Hedaoo, P. Tiwari, L.M. Kukreja, S.M. Oak, S. Dasari, and G. Raghavendra, Studies on Laser Peening of Spring Steel for Automotive Applications, Opt. Laser. Eng., 2012, 50, p 678

    Article  Google Scholar 

  35. R. Sundar, R.H. Kumar, R. Kaul, K. Ranganathan, P. Tiwari, L.M. Kukreja, and S.M. Oak, Studies on Laser Peening Using Different Sacrificial Coatings, Surf. Eng., 2012, 28(8), p 564–568

    Article  Google Scholar 

  36. B.D. Cullity, Elements of X-Ray Diffraction, 2nd ed., Addison-Wesley, Reading, MA, 1978

    Google Scholar 

  37. I.C. Noyan and J.B. Cohen, Residual Stress, Springer, New York, 1987

    Book  Google Scholar 

  38. N.S. Rossini, M. Dassisti, K.Y. Benyounis, and A.G. Olabi, Methods of Measuring Residual Stresses in Components, Mater. Des., 2012, 35, p 572–588

    Article  Google Scholar 

  39. ASTM G36 (94), Standard Practice for Evaluating Stress-Corrosion-Cracking Resistance of Metals and Alloys in Magnesium Chloride Solution, ASTM International, Pennsylvania, 2013.

  40. Y. Fan, J. Zhou, S. Huang, J. Fan, B. Gao, and W. Zhu, Residual Stress Induced by Multi-micro Laser Shock Peening Under Overlapping Process, China Opt. Lett., 2012, 10(1), p S11408

    Google Scholar 

  41. P. Peyre, R. Fabbro, P. Merrien, and H.P. Lieurade, Laser Chock Processing of Aluminum Alloys: Application to High Cycle Fatigue Behavior, Mater. Sci. Eng. A, 1996, 210, p 102–113

    Article  Google Scholar 

  42. C.S. Montross, T. Wei, L. Ye, G. Clark, and Yiu-Wing Mai, Laser Shock Processing and Its Effects on Microstructure and Properties of Metals and Alloys: A Review, Int. J. Fatigue, 2002, 24, p 1021–1036

    Article  Google Scholar 

  43. J.E. Scheel, D.J. Hornbach, and N. Jayaraman, Preventing Stress Corrosion Cracking of Nuclear Weldments via Low Plasticity Burnishing, http://www.lambdatechs.com/documents/278.pdf, Accessed on 17.06.2015.

  44. D.Y. Jang, T.R. Watkins, K.J. Kozaczek, C.R. Hubbard, and O.B. Cavin, Surface Residual Stresses in Machined Austenitic Stainless Steel, Wear, 1996, 194, p 168–173

    Article  Google Scholar 

  45. R. Fabbro, J. Fournier P. Ballard, D. Devaux, and J. Virmont, Physical Study of Laser-Produced Plasma in Confined Geometry, J. Appl. Phys., 1990, 68(2), p 775-784.

  46. A.W. Warren, Y.B. Guo, and S.C. Chen, Massive Parallel Laser Shock Peening: Simulation Analysis and Validation, Int. J. Fatigue, 2008, 30, p 188–197

    Article  Google Scholar 

  47. W. Zhang, Y.L. Yao, and I.C. Noyan, Microscale Laser Shock Peening of Thin Films, Part I: Experiment, Modelling and Simulation, J. Manuf. Sci. Eng., 2004, 126, p 10–17

    Article  Google Scholar 

  48. P. Peyre, R. Fabbro, L. Bethe, X. Scherpereel, and E. Bartnicki, Laser Shock Processing of Materials and Related Phenomenon, Proc. Int. Conf. High-Power Laser Ablation, SPIE 3343, Ed. Claude R. Phipps, 1998, Santa Fe, NM, Paper ID 183.

  49. P.S. Prevéy, The Effect of Cold Work on the Thermal Stability of Residual Compression in Surface Enhanced IN718, Proc. 20th ASM Materials Solutions Conf. & Expo., St. Louis, Missouri, October 10-12, 2000.

Download references

Acknowledgment

Technical assistance of Mr. Ram Nihal Ram in metallographic specimen preparation is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ganesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sundar, R., Ganesh, P., Kumar, B.S. et al. Mitigation of Stress Corrosion Cracking Susceptibility of Machined 304L Stainless Steel Through Laser Peening. J. of Materi Eng and Perform 25, 3710–3724 (2016). https://doi.org/10.1007/s11665-016-2220-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2220-3

Keywords

Navigation