Skip to main content
Log in

A Hybrid Laser Surface Treatment for Refurbishment of Stress Corrosion Cracking Damaged 304L Stainless Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The paper describes a new hybrid laser surface treatment approach, combining laser surface melting and laser shock peening treatments, for refurbishment stress corrosion cracking damaged type 304L stainless steel specimens. Hybrid laser surface treatment produced crack-free compressively stressed surface. With respect to as-machined specimens, laser-rejuvenated specimens demonstrated significantly reduced susceptibility to stress corrosion cracking in chloride environment with minor increase in mean surface roughness. The results of the study, although particularly applicable to shallow stress corrosion cracking damage, are important for life extension of in-service stainless steel components operating in corrosive chloride environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Mochizuki, Control of Welding Residual Stress for Ensuring Integrity Against Fatigue and Stress-Corrosion Cracking, Nucl. Eng. Des., 2007, 237(2), p 107–123

    Article  Google Scholar 

  2. H. Shaikh, R. Amirthalingam, T. Anita, N. Sivaibharasi, T. Jaykumar, P. Manohar, and H.S. Khatak, Evaluation of Stress Corrosion Cracking Phenomenon in an AISI, Type 316LN Stainless Steel Using Acoustic Emission Technique, Corros. Sci., 2007, 49(2), p 740–765

    Article  Google Scholar 

  3. J. Kovac, C. Alaux, T.J. Marrow, E. Govekar, and A. Legat, Correlations of Electrochemical Noise, Acoustic Emission and Complementary Monitoring Techniques During Intergranular Stress-Corrosion Cracking of Austenitic Stainless Steel, Corros. Sci., 2010, 52(6), p 2015–2025

    Article  Google Scholar 

  4. T. Shibata, Passivity Breakdown and Stress Corrosion Cracking of Stainless Steel, Corros. Sci., 2007, 49, p 20–30

    Article  Google Scholar 

  5. B. Raj, S.L. Mannan, P.R. Vasudev Rao, and M.D. Mathew, Development of Fuels and Structural Materials for Fast Breeder Reactor, Sadhana, 2002, 27(5), p 527–558

    Article  Google Scholar 

  6. K.R. Trethewey, Some Observations on the Current Status in the Understanding of Stress-Corrosion Cracking of Stainless Steels, Mater. Des., 2008, 29(2), p 501–507

    Article  Google Scholar 

  7. D. Féron and J.-M. Olive, Ed., Corrosion Issues in Light Water Reactors—Stress Corrosion Cracking, 1st ed., Woodhead Publishing, Cambridge, 2007

    Google Scholar 

  8. Stress Corrosion Cracking in Light Water Reactors: Good Practices and Lessons Learned, IAEA Nuclear Energy Series, ISSN 1995–7807; no. NP-T-3.13, International Atomic Energy Agency, Vienna, 2011

  9. H.S. Khatak, V. Seetharaman, and J.B. Gnanamoorthy, Failure Analysis of Welded Helium Tanks, Pract. Metallogr., 1983, 20(11), p 570–578

    Google Scholar 

  10. T.V. Vinoy, H. Shaikh, H.S. Khatak, J.B. Gnanamoorthy, and B. Raj, Metallurgical Failure Analysis of a Failed Containment Building Door Bellows of a Nuclear Reactor, Pract. Metallogr., 1997, 34, p 527–534

    Google Scholar 

  11. M. Nakahara, Preventing Stress Corrosion Cracking of Austenitic Stainless Steels in Chemical Plants, NiDi Technical Series 10066, Nickel Development Institute, http://www.nickelinstitute.org/~/Media/Files/TechnicalLiterature/PreventingStress_CorrosionCrackingofAusteniticStainlessSteelsinChemicalPlants_10066_.pdf, visited on 20.01.2014.

  12. M.J. Esmacher, Stress Corrosion Cracking in Boilers and Cooling Water Systems, Stress Corrosion Cracking—Theory and Practice, V.S. Raja and T. Shoji, Ed., Woodhead Publishing, Philadelphia, USA, 2011, p 537–607

    Google Scholar 

  13. C.Y. Su, C.P. Chou, B.C. Wu, and W.C. Lih, Plasma Transferred Arc Welding of the Nickel-Base Superalloy IN-738LC, J. Mater. Eng. Perform., 1997, 6(5), p 619–627

    Article  Google Scholar 

  14. A.K. Bhaduri, T.P.S. Gil, S.K. Albert, K. Shanmugam, and D.R. Iyer, Repair Welding of Cracked Steam Turbine Blades Using Austenitic and Martensitic Stainless Steel Consumables, Nucl. Eng. Des., 2001, 206(2–3), p 249–259

    Article  Google Scholar 

  15. M.B. Henderson, D. Arrell, R. Larsson, M. Heobel, and G. Mercahnt, Practices for Industrial Gas Turbine Applications, Sci. Technol. Weld. Join., 2004, 9(1), p 13–21

    Article  Google Scholar 

  16. A. Kumar, J. Boy, R. Zatorski, and J.D. Stephenson, Thermal Spray and Weld Repair Alloy in the Repair of Cavitation Damage in Turbines and Pumps: A Technical Note, J. Therm. Spray Technol., 2005, 14(2), p 177–182

    Article  Google Scholar 

  17. W.M. Steen and J. Mazumdar, Laser Material Processing, 4th ed., Springer, London, UK, 2010

    Book  Google Scholar 

  18. Q. Liu, M. Janardhana, B. Hinton, M. Brandt, and K. Sharp, Laser Cladding as Potential Repair Technology for Damaged Aircraft Components, Int. J. Struct. Integr., 2011, 2(3), p 314–321

    Article  Google Scholar 

  19. C. van Rooyen, H. Berger, and M. Theron, Laser Cladding Crack Repair of Austenitic Stainless Steel. Proc. 5th Int. Conf. WLT-Conf. on Lasers in Manufacturing, Munich, 2009.

  20. S. Sexton, S. Lavin, G. Byrne, and A. Kennedy, Laser Cladding of Aerospace Materials, J. Mater. Process. Technol., 2002, 122(1), p 63–68

    Article  Google Scholar 

  21. E. Capello, D. Colombo, and B. Previtali, Repairing of sintered Tools Using Laser Cladding by Wire, J. Mater. Process. Technol., 2005, 164–165, p 990–1000

    Article  Google Scholar 

  22. R.B. Mudge and N.R. Wald, Laser Engineered Net Shaping (LENS) Advances Additive Manufacturing and Repair, Weld. J., 2007, 86(1), p 44–48

    Google Scholar 

  23. J. Stewart, D.B. Wells, P.M. Scott, and A.S. Bransden, The Prevention of IGSCC in Sensitized Stainless Steel by Laser Surface Melting, Corrosion, 1990, 46(8), p 618–620

    Article  Google Scholar 

  24. T.R. Anthony and H.E. Cline, Surface Normalization of Sensitized Stainless Steel by Laser Surface Melting, J. Appl. Phys., 1978, 49, p 1248–1255

    Article  Google Scholar 

  25. U.K. Mudali and R.K. Dayal, Improving Intergranular Corrosion Resistance of Sensitized Type 316 Stainless Steel by Laser Surface Melting, J. Mater. Eng. Perform., 1992, 1(3), p 341–3465

    Article  Google Scholar 

  26. C.T. Kwok, K.H. Lo, W.K. Chan, F.T. Cheng, and H.C. Man, Effect of Laser Surface Melting on Intergranular Corrosion Behavior Of Aged Austenitic and Duplex Stainless Steels, Corros. Sci., 2011, 53(4), p 1581–1591

    Article  Google Scholar 

  27. G. Bao, K. Shinozaki, S. Iguro, M. Inkyo, M. Yamamoto, Y. Mahara, and H. Watanabe, Stress Corrosion Cracking Sealing in Overlaying of Inconel 182 of by Laser Surface Melting, J. Mater. Process. Technol., 2006, 173(3), p 330–336

    Article  Google Scholar 

  28. Y.K. Zhang, X.D. Ren, J.Z. Zhou, J.Z. Lu, and L.C. Zhou, Investigation of Stress Intensity Factor Changing on the Hole Crack Subject to Laser Shock Processing, Mater. Des., 2009, 30(7), p 2769–2773

    Article  Google Scholar 

  29. R. Fabbro, P. Peyre, L. Berthe, and X. Scherpereel, Physics and Applications of Laser-Shock Processing, J. Laser Appl., 1998, 10(6), p 265–279

    Article  Google Scholar 

  30. L. Berthe, P. Peyre, X. Scherpereel, R. Fabbro, and M. Jeandin, Laser Shock Surface Processing of Materials, Laser in Surface Engineering, Surface Engineering Series, Vol 1, N.B. Dahotre, Ed., ASM International, Metals Park, OH, 1998, p 465–504

    Google Scholar 

  31. P. Ganesh, R. Sundar, H. Kumar, R. Kaul, K. Ranganathan, P. Hedaoo, G. Raghavendra, S. Anand Kumar, P. Tiwari, D.C. Nagpure, K.S. Bindra, L.M. Kukreja, and S.M. Oak, Studies on Fatigue Life Enhancement of Pre-fatigued Spring Steel Specimens Using Laser Shock Peening, Mater. Des., 2014, 54, p 734–741

    Article  Google Scholar 

  32. O. Hatamleh, P.M. Singh, and H. Garmestani, Corrosion Susceptibility of Peened Friction Stir Welded 7075 Aluminum Alloy Joints, Corros. Sci., 2009, 51(1), p 135–143

    Article  Google Scholar 

  33. J.Z. Lu, K.Y. Luo, D.K. Yang, X.N. Cheng, J.L. Hu, F.Z. Dai, H. Qi, L. Zhang, J.S. Zhong, Q.W. Wang, and Y.K. Zhang, Effects of Laser Peening on Stress Corrosion Cracking (SCC) of ANSI, 304 Austenitic Stainless Steel, Corros. Sci., 2012, 60, p 145–152

    Article  Google Scholar 

  34. Y. Sano, M. Obataa, T. Kubo, N. Mukai, M. Yada, K. Masaki, and Y. Ochi, Retardation of Crack Initiation and Growth in Austenitic Stainless Steels by Laser Peening Without Protective Coating, Mater. Sci. Eng. A, 2006, 417(1–2), p 334–340

    Article  Google Scholar 

  35. Standard Practice for Evaluating Stress-Corrosion-Cracking Resistance of Metals and Alloys in a Boiling Magnesium Chloride Solution, G36-94 (2013), ASTM International, Pennsylvania, 2013

  36. S. Ghosh and V. Kain, Microstructural Changes in AISI, 304 Stainless Steel due to Surface Machining: Effect on its Susceptibility to Chloride Stress Corrosion Cracking, J. Nucl. Mater., 2010, 402, p 62–67

    Article  Google Scholar 

  37. A. Tumbull, K. Mingard, J.D. Lord, B. Roebuck, D.R. Tice, K.J. Mottershead, N.D. Fairweather, and A.K. Bradbury, Sensitivity of Stress Corrosion Cracking of Stainless Steel to Surface Machining and Grinding Procedure, Corros. Sci., 2011, 53(10), p 3398–3415

    Article  Google Scholar 

  38. S. Ghosh, V.P.S. Rana, V. Kain, V. Mittal, and S.K. Baveja, Role of Residual Stress Induced by Industrial Fabrication on Stress Corrosion Cracking Susceptibility of Austenitic Stainless Steel, Mater. Des., 2011, 32(7), p 3823–3837

    Article  Google Scholar 

  39. P. Ganesh, R. Sunder, H. Kumar, R. Kaul, K. Ranagnathan, P. Hedaoo, P. Tiwari, L.M. Kukreja, S.M. Oak, S. Dasari, and G. Raghavendra, Studies on Laser Peening of Spring Steel for Automotive Applications, Opt. Lasers Eng., 2012, 50(5), p 678–686

    Article  Google Scholar 

  40. R. Sundar, H. Kumar, R. Kaul, K. Ranganathan, P. Tiwari, L.M. Kukreja, and S.M. Oak, Studies on Laser Peening Using Different Sacrificial Coatings, Surf. Eng., 2012, 28(8), p 564–568

    Article  Google Scholar 

  41. C. Suryanarayana and M.G. Norton, X-ray Diffraction—A Practical Approach, Plenum Press, New York, 1998, p 63–98

    Book  Google Scholar 

  42. B.D. Cullity, Elements of x-ray Diffraction, 2nd ed., Addison-Wesley, Menlo Park, CA, 1978

    Google Scholar 

  43. C. Noyan and J.B. Cohen, Residual Stress, Springer, New York, 1987

    Book  Google Scholar 

  44. H. Stamm, U. Holzwarth, D.J. Boerman, F. Dos Santos Marques, A. Olchini, and R. Zausch, Effect of Laser Surface Treatment on High Cycle Fatigue of AISI, 316L Stainless Steel, Fatigue Fract. Eng. Mater. Struct., 1996, 19(8), p 985–995

    Article  Google Scholar 

  45. P. S. Prevéy, The Effect of Cold Work on the Thermal Stability of Residual Compression in Surface Hardened IN718. Proc. 20th ASM Materials Solutions Conference and Exposition, St. Louis, Missouri, Oct 10–12, 2000.

Download references

Acknowledgment

Authors are extremely thankful to Mr. S. K. Rai for x-ray diffraction examination of laser-treated specimens. They wish to thank to Mr. D. C. Nagpure for his constant support in residual stress analysis of laser-treated specimens. Authors thank Mr. Amarendra Singh for surface roughness measurements of the specimens. Technical assistance of Mr. Ram Nihal Ram in metallographic specimen preparation is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kaul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, R.K., Sundar, R., Kumar, B.S. et al. A Hybrid Laser Surface Treatment for Refurbishment of Stress Corrosion Cracking Damaged 304L Stainless Steel. J. of Materi Eng and Perform 24, 2569–2576 (2015). https://doi.org/10.1007/s11665-015-1530-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1530-1

Keywords

Navigation