Skip to main content
Log in

Enhancing Thermal Conductivity of Mg-Sn Alloy Sheet by Cold Rolling and Aging

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In present work, effect of cold rolling and aging on thermal conductivity (TC) of the as-extruded Mg-2Sn alloy was studied. Experimental results revealed that TC of as-extruded sheet decreases to value of ~105.4 W/m/K after 18% reduction rolling. TC increases with increase in aging time and regains the highest value of 126 W/m/K. Enhanced TC of cold-rolled Mg-Sn alloys is attributed to the defects annihilation, residual stress release, and precipitations. The more pronounced rolling reduction would induce more second-phase precipitations, and thus TC of the 18% rolled alloy is larger than that of 5% rolled alloys. Texture is also an important factor affecting thermal conductivity of Mg alloys, and double-peak texture is not beneficial for thermal transportation. The result would shed light on the novel design of highly conductive Mg sheet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.A. Luo, Magnesium Casting Technology for Structural Applications, J. Magnes. Alloys, 2013, 1, p 2–22

    Article  Google Scholar 

  2. H.C. Pan, F.S. Pan, J. Peng, J. Gou, A.T. Tang, L. Wu, and H.W. Dong, High-Conductivity Binary Mg-Zn Sheet Processed by Cold Rolling and Subsequent Aging, J. Alloys Compd., 2013, 578, p 493–500

    Article  Google Scholar 

  3. G.W. Qin, Y.P. Ren, W. Huang, S. Li, and W.L. Pei, Grain Refining Mechanism of Al-Containing Mg Alloys with the Addition of Mn-Al Alloys, J. Alloys Compd., 2010, 507, p 410–413

    Article  Google Scholar 

  4. W. Chen, X. Wang, L. Hu, and E. Wang, Fabrication of ZK60 Magnesium Alloy Thin Sheets with Improved Ductility by Cold Rolling and Annealing Treatment, Mater. Des., 2012, 40, p 319–323

    Article  Google Scholar 

  5. X. Chen, J. Liu, Z. Zhang, and F. Pan, Effect of Heat Treatment on Electromagnetic Shielding Effectiveness of ZK60 Magnesium Alloy, Mater. Des., 2012, 42, p 327–333

    Article  Google Scholar 

  6. D. Ji, C. Liu, L. Tang, Y. Wan, and C. Huang, Microstructures and Mechanical Properties of a Hot Extruded Mg-4.45 Zn-0.46Y-0.76Zr Alloy Plate, Mater. Des., 2014, 53, p 602–610

    Article  Google Scholar 

  7. C. Zhao, F. Pan, S. Zhao, H. Pan, K. Song, and A. Tang, Preparation and Characterization of As-Extruded Mg-Sn Alloys for Orthopedic Applications, Mater. Des., 2015, 70, p 60–67

    Article  Google Scholar 

  8. M. Avvari and S. Narendranath, Influence of Route-R on Wrought Magnesium AZ61 Alloy Mechanical Properties Through Equal Channel Angular Pressing, J. Magnes. Alloys, 2014, 2, p 159–164

    Article  Google Scholar 

  9. M. Kiani, I. Gandikota, M. Rais-Rohani, and K. Motoyama, Design of Lightweight Magnesium Car Body Structure Under Crash and Vibration Constraints, J. Magnes. Alloys, 2014, 2, p 99–108

    Article  Google Scholar 

  10. B. Lv, J. Peng, Y. Peng, and A. Tang, The Effect of Addition of Nd and Ce on the Microstructure and Mechanical Properties of ZM21Mg alloy, J. Magnes. Alloys, 2013, 1, p 94–100

    Article  Google Scholar 

  11. T. Zhu, P. Fu, L. Peng, X. Hu, S. Zhu, and W. Ding, Effects of Mn Addition on the Microstructure and Mechanical Properties of Cast Mg-9Al-2Sn (wt.%) Alloy, J. Magnes. Alloys, 2014, 2, p 27–35

  12. H. Zhang, G. Huang, J. Fan, H.J. Roven, B. Xu, and H. Dong, Deep Drawability and Drawing Behaviour of AZ31 Alloy Sheets with Different Initial Texture, J. Alloys Compd., 2014, 615, p 302–310

    Article  Google Scholar 

  13. H. Zhang, G. Huang, J. Fan, H.J. Roven, F. Pan, and B. Xu, Deep Drawability and Deformation Behavior of AZ31 Magnesium Alloy Sheets at 473 K, Mater. Sci. Eng. A, 2014, 608, p 234–241

    Article  Google Scholar 

  14. H. Zhang, W. Jin, J. Fan, W. Cheng, H.J. Roven, B. Xu, and H. Dong, Grain Refining and Improving Mechanical Properties of a Warm Rolled AZ31 Alloy Plate, Mater. Lett., 2014, 135, p 31–34

    Article  Google Scholar 

  15. A. Rudajevova and P. Lukac, Comparison of the Thermal Properties of AM20 and AS21 Magnesium Alloys, Mater. Sci. Eng. A, 2005, 397, p 16–21

    Article  Google Scholar 

  16. A. Rudajevova, M. Staněk, and P. Lukáč, Determination of Thermal Diffusivity and Thermal Conductivity of Mg-Al alloys, Mater. Sci. Eng. A, 2003, 341, p 152–157

    Article  Google Scholar 

  17. A. Rudajevová, F. Von Buch, and B. Mordike, Thermal Diffusivity and Thermal Conductivity of MgSc Alloys, J. Alloys Compd., 1999, 292, p 27–30

    Article  Google Scholar 

  18. M. Yamasaki and Y. Kawamura, Thermal Diffusivity and Thermal Conductivity of Mg-Zn-Rare Earth Element Alloys with Long-Period Stacking Ordered Phase, Scr. Mater., 2009, 60, p 264–267

    Article  Google Scholar 

  19. C.J. Chen, Q.D. Wang, and D.D. Yin, Thermal Properties of Mg-11Y-5Gd-2Zn-0.5Zr (wt.%) Alloy, J. Alloys Compd., 2009, 487, p 560–563

    Article  Google Scholar 

  20. S. Lee, H.J. Ham, S.Y. Kwon, S.W. Kim, and C.M. Suh, Thermal Conductivity of Magnesium Alloys in the Temperature Range from −125 °C to 400 °C, Int. J. Thermophys., 2012, 34, p 1–8

    Google Scholar 

  21. J. Yuan, K. Zhang, T. Li, X. Li, Y. Li, M. Ma, P. Luo, G. Luo, and Y. Hao, Anisotropy of Thermal Conductivity and Mechanical Properties in Mg-5Zn-1Mn Alloy, Mater. Des., 2012, 40, p 257–261

    Article  Google Scholar 

  22. J. Yuan, K. Zhang, X. Zhang, X. Li, T. Li, Y. Li, M. Ma, and G. Shi, Thermal Characteristics of Mg-Zn-Mn Alloys with High Specific Strength and High Thermal Conductivity, J. Alloys Compd., 2013, 578, p 32–36

    Article  Google Scholar 

  23. H. Pan, F. Pan, X. Wang, J. Peng, A. Tang, J. She, and J. Gou, Correlation on the electrical and thermal conductivity for binary Mg-Al and Mg-Zn alloy, Int. J. Thermophys., 2013, 34, p 1336–1346

    Article  Google Scholar 

  24. H. Pan, F. Pan, R. Yang, J. Peng, C. Zhao, J. She, Z. Gao, and A. Tang, Thermal and Electrical Conductivity of Binary Magnesium Alloys, J Mater. Sci., 2014, 49, p 3107–3124

    Article  Google Scholar 

  25. M.A. Gibson, X. Fang, C.J. Bettles, and C.R. Hutchinson, The Effect of Precipitate State on the Creep Resistance of Mg-Sn Alloys, Scr. Mater., 2010, 63, p 899–902

    Article  Google Scholar 

  26. F.R. Elsayed, T.T. Sasaki, T. Ohkubo, H. Takahashi, S.W. Xu, S. Kamado, and K. Hono, Effect of Extrusion Conditions on Microstructure and Mechanical Properties of Microalloyed Mg-Sn-Al-Zn Alloys, Mater. Sci. Eng. A, 2013, 588, p 318–328

    Article  Google Scholar 

  27. W.L. Cheng, H.S. Kim, B.S. You, B.H. Koo, and S.S. Park, Strength and Ductility of Novel Mg-8Sn-1Al-1Zn Alloys Extruded at Different Speeds, Mater. Lett., 2011, 65, p 1525–1527

    Article  Google Scholar 

  28. J. Leitner, P. Voňka, D. Sedmidubský, and P. Svoboda, Application of Neumann-Kopp Rule for the Estimation of Heat Capacity of Mixed Oxides, Thermochimica Acta, 2010, 497, p 7–13

    Article  Google Scholar 

  29. A. Lindemann, J. Schmidt, M. Todte, and T. Zeuner, Thermal Analytical Investigations of the Magnesium Alloys AM 60 and AZ 91 Including the Melting Range, Thermochimica Acta, 2002, 382, p 269–275

    Article  Google Scholar 

  30. J. Zhang, W. Li, and Z. Guo, Static Recrystallization and Grain Growth During Annealing of an Extruded Mg-Zn-Zr-Er Magnesium Alloy, J. Magnes. Alloys, 2013, 1, p 31–38

    Article  Google Scholar 

  31. C. Kittel, Introduction to Solid State Physics, 5th ed., Wiley, New York, 1976

    Google Scholar 

  32. H. Pan, F. Pan, X. Wang, J. Peng, J. Gou, J. She, and A. Tang, Correlation on the Electrical and Thermal Conductivity for Binary Mg-Al and Mg-Zn Alloys, Int. J. Thermophys., 2013, 34, p 1336–1346

    Article  Google Scholar 

  33. E.I. Salkovitz, A.I. Schindler, and E.W. Kammer, Transport Properties of Dilute Binary Magnesium Alloys, Phys. Rev., 1957, 105, p 887–892

    Article  Google Scholar 

  34. Q. Yang, B. Jiang, H. Pan, B. Song, Z. Jiang, J. Dai, L. Wang, and F. Pan, Influence of Different Extrusion Processes on Mechanical Properties of Magnesium Alloy, J. Magnes. Alloys, 2014, 2, p 220–224

    Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the financial support from National Natural Science Foundation of China (No. 51525101, No. 51501032, No. 51171043, and No. 51371046), Program for New Century Excellent Talents in University (No.NECT-12-0109) and Fundamental Research Funds for the Central Universities (No. N130510002, No. N141003001, No. L1502025, and No. L1502047). Research funds from Liaoning Province (L20150176, 201501152) and from Chongqing City (CQZJKY2013001, 2014QK263, and CX201407). General Financial Grant from the China Postdoctoral Science Foundation (2015M581350).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aitao Tang or Hucheng Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Q., Tang, A., Ma, S. et al. Enhancing Thermal Conductivity of Mg-Sn Alloy Sheet by Cold Rolling and Aging. J. of Materi Eng and Perform 25, 2356–2363 (2016). https://doi.org/10.1007/s11665-016-2095-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2095-3

Keywords

Navigation