Skip to main content
Log in

Microhardness and Texture Evolution of Ultralight Mg–Li Alloy Processed by Cold Rolling

  • PRESSURE TREATMENT OF METALS
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

Single β-type Mg–12Li and Mg–12Li–1Al (wt %) alloy sheets were prepared by casting, followed by cold rolling. Microstructure and texture analysis were carried out on the alloy samples using optical microscopy, scanning electron microscope, X-ray diffractometry, and microhardness testing. The results indicated that cold-rolled alloys exhibited elongated grains in rolling direction with many slip lines and deformation bands. No recrystallization was observed during the whole cold rolling process. The microhardness was from 40 to 55 HV for Mg–12Li and 60 to 85 HV for Mg–12Li–1Al, indicating that the aluminum (Al) addition improved the strain hardening of Mg–12Li. Texture evolution analysis revealed that (111) [110] was the preferred orientation during deformation in both alloys, while the addition of Al in the as-cast Mg–12Li not only lowered the {200} pole figure intensity but also occupied the (111) [110] orientation in the alpha and gamma fiber maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Wu, Z. and Curtin, W., The origins of high hardening and low ductility in magnesium, Nature, 2015, vol. 526, no. 7571, p. 62.

    Article  CAS  Google Scholar 

  2. Koike, J., Kobayashi, T., Mukai, T., Watanabe, H., Suzuki, M., Maruyama, K., and Higashi, K., The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys, Acta Mater., 2003, vol. 51, no. 7, pp. 2055–2065.

    Article  CAS  Google Scholar 

  3. Ogawa, N., Shiomi, M., and Osakada, K., Forming limit of magnesium alloy at elevated temperatures for precision forging, Int. J. Mach. Tools Manuf., 2002, vol. 42, no. 5, pp. 607–614.

    Article  Google Scholar 

  4. Wang, X., Xu, D., Wu, R., Chen, X., Peng Q., Jin, L., Xin, Y., Zhang, Z., Liu, Y., and Chen, X., What is going on in magnesium alloys?, J. Mater. Sci. Technol., 2018, vol. 34, no. 2, pp. 245–247.

    Article  Google Scholar 

  5. Dutkiewicz, J., Rogal, Ł., Kalita, D., and Fima, P., Development of new age hardenable Mg-Li-Sc alloys, J. Alloys Compd., 2019, vol. 784, pp. 686–696.

    Article  CAS  Google Scholar 

  6. Wu, R.-Z., Yan, Y.-D., Wang, G.-X., Murr, L., Han, W., Zhang, Z.-W., and Zhang, M.-L., Recent progress in magnesium-lithium alloys, Int. Mater. Rev., 2015, vol. 60, no. 2, pp. 65–100.

    Article  CAS  Google Scholar 

  7. Shin, I. and Carter, E.A., First-principles simulations of plasticity in body-centered-cubic magnesium-lithium alloys, Acta Mater., 2014, vol. 64, pp. 198–207.

    Article  CAS  Google Scholar 

  8. Massalski, T., Okamoto, H., Subramanian, P., and Kacprzak, L., Binary Alloy Phase Diagrams, Materials Park, OH: ASM Int., 1987.

    Google Scholar 

  9. Meng-Chang Lin, Shang-Qiu Lin, and Jun-Yen Uan, Effect of annealing temperature on the microstructure and mechanical properties of an as-rolled Mg–9 wt % Li–3 wt % Al–1 wt % Zn alloy sheet, Front. Mater. Sci., 2014, vol. 8, no. 3, pp. 271–280.

    Article  Google Scholar 

  10. Liu, T., Wu, S., Li, S., and Li, P., Microstructure evolution of Mg–14% Li–1% Al alloy during the process of equal channel angular pressing, Mater. Sci. Eng., A, 2007, vol. 460, pp. 499–503.

    Article  Google Scholar 

  11. Yamamoto, A., Ashida, T., Kouta, Y., Kim, K.B., Fukumoto, S., and Tsubakino, H., Precipitation in Mg–(4–13)% Li–(4–5)% Zn ternary alloys, Mater. Trans., 2003, vol. 44, no. 4, pp. 619–624.

    Article  CAS  Google Scholar 

  12. Kim, Y.-H., Kim, J.-H., Yu, H.-S., Choi, J.-W., and Son, H.-T., Microstructure and mechanical properties of Mg–xLi–3Al–1Sn–0.4Mn alloys (x = 5, 8, and 11 wt %), J. Alloys Compd., 2014, vol. 583, pp. 15–20.

    Article  CAS  Google Scholar 

  13. Park, G.H., Kim, J.T., Park, H.J., Kim, Y.S., Jeong, H.J., Lee, N., Seo, Y., Suh, J.-Y., Son, H.-T., and Wang, W.-M., Development of lightweight MgLiAl alloys with high specific strength, J. Alloys Compd., 2016, vol. 680, pp. 116–120.

    Article  CAS  Google Scholar 

  14. Friák, M., Counts, W.A., Raabe, D., and Neugebauer, J., Ab initio guided design of bcc Mg–Li alloys for ultra-lightweight applications, Proc. APS Meeting, Pittsburgh, PA, 2009.

  15. Counts, W.A., Friak, M., Raabe, D., and Neugebauer, J., Using ab initio calculations in designing bcc MgLi–X alloys for ultra-lightweight applications, Adv. Eng. Mater., 2010, vol. 12, no. 12, pp. 1198–1205.

    Article  CAS  Google Scholar 

  16. Counts, W.A., Friak, M., Raabe, D., and Neugebauer, J., Ab initio guided design of bcc ternary Mg–Li–X (X = Ca, Al, Si, Zn, Cu) alloys for ultra-lightweight applications, Adv. Eng. Mater., 2010, vol. 12, no. 7, pp. 572–576.

    Article  CAS  Google Scholar 

  17. Zhang, M., Wu, R., and Wang, T., Microstructure and mechanical properties of Mg–8Li–(0–3)Ce alloys, J. Mater. Sci., 2009, vol. 44, no. 5, pp. 1237–1240.

    Article  CAS  Google Scholar 

  18. Wu, R., Qu, Z., and Zhang, M., Reviews on the influences of alloying elements on the microstructure and mechanical properties of Mg–Li base alloys, Rev. Adv. Mater. Sci., 2010, vol. 24, no. 3, pp. 35–43.

    CAS  Google Scholar 

  19. Kudela, S., Gergely, V., Smrčok, L., Oswald, S., Baunack, S., and Wetzig, K., Phase transformations of δ-Al2O3 (Saffil) fibres during their interaction with molten MgLi alloys, J. Mater. Sci., 1996, vol. 31, no. 6, pp. 1595–1602.

    Article  CAS  Google Scholar 

  20. Li, H.-p., Ye, L.-y., Zhang, P., Zhong, J., and Huang, M.-h., Microstructure and texture characterization of superplastic Al–Mg–Li alloy, Trans. Nonferrous Met. Soc. China, 2014, vol. 24, no. 7, pp. 2079–2087.

    Article  CAS  Google Scholar 

  21. Birsan, M. and Szpunar, J., The influence of texture on domain wall spacing in grain-oriented materials, J. Magn. Magn. Mater.,1996, vol. 164, no. 3, pp. 300–304.

    Article  CAS  Google Scholar 

  22. Bunge, H.-J., Texture Analysis in Materials Science: Mathematical Methods, Elsevier, 2013.

    Google Scholar 

  23. Kúdela, S., Rennekamp, R., Baunack, S., Gergely, V., Oswald, S., and Wetzig, K., TEM study of the fibre cross-section attack in δ-Al2O3/Mg8Li metal matrix composites, Microchim. Acta, 1997, vol. 127, nos. 3–4, pp. 243–252.

    Article  Google Scholar 

  24. Li, J., Wu, D., Chen, R., and Han, E., Anomalous effects of strain rate on the room-temperature ductility of a cast Mg–Gd–Y–Zr alloy, Acta Mater., 2018, vol. 159, pp. 31–45.

    Article  CAS  Google Scholar 

  25. Li, L., Deformation band and texture of a cast Mg–RE alloy under uniaxial hot compression, Mater. Sci. Eng., A, 2011, vol. 528, no. 24, pp. 7178–7185.

    Article  CAS  Google Scholar 

  26. Shah, S., Jiang, M., Wu, D., Wasi, U., and Chen, R., Dynamic recrystallization and texture evolution of GW94 Mg alloy during multi-and unidirectional impact forging, Acta Metall. Sin. (Engl. Lett.), 2018, vol. 31, pp. 923932.

  27. Galiyev, A., Kaibyshev, R., and Gottstein, G., Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60, Acta Mater., 2001, vol. 49, no. 7, 1199–1207.

    Article  CAS  Google Scholar 

  28. Shi, B., Chen, R., and Ke, W., Effects of yttrium and zinc on the texture, microstructure and tensile properties of hot-rolled magnesium plates, Mater. Sci. Eng., A, 2013, vol. 560, pp. 62–70.

    Article  CAS  Google Scholar 

  29. Li, R., Pan, F., Jiang, B., Dong, H., and Yang, Q., Effect of Li addition on the mechanical behavior and texture of the as-extruded AZ31 magnesium alloy, Mater. Sci. Eng., A, 2013, vol. 562, pp. 33–38.

    Article  CAS  Google Scholar 

  30. Zeng, Y., Jiang, B., Yang, Q., Quan, G., He, J., Jiang, Z., and Pan, F., Effect of Li content on microstructure, texture and mechanical behaviors of the as-extruded Mg–Li sheets, Mater. Sci. Eng., A, 2017, vol. 700, pp. 59–65.

    Article  CAS  Google Scholar 

  31. Bajargan, G., Singh, G., and Ramamurty, U., Effect of Li addition on the plastic deformation behavior of AZ31 magnesium alloy, Mater. Sci. Eng., A, 2016, vol. 662, pp. 492–505.

    Article  CAS  Google Scholar 

  32. Kelley, E. and Hosford, W., Plane-strain compression of magnesium and magnesium alloy crystals, Trans. Metall. Soc. AIME, 1968, vol. 242, no. 1, pp. 5–13.

    CAS  Google Scholar 

  33. Agnew, S., Horton, J., and Yoo, M., Transmission electron microscopy investigation of ❬c + a❭ dislocations in Mg and α-solid solution Mg–Li alloys, Metall. Mater. Trans. A, 2002, vol. 33, no. 3, pp. 851–858.

    Article  Google Scholar 

  34. Agnew, S., Yoo, M., and Tome, C., Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y, Acta Mater., 2001, vol. 49, no. 20, pp. 4277–4289.

    Article  CAS  Google Scholar 

  35. Al-Samman, T., Comparative study of the deformation behavior of hexagonal magnesium–lithium alloys and a conventional magnesium AZ31 alloy, Acta Mater., 2009, vol. 57, no. 7, pp. 2229–2242.

    Article  CAS  Google Scholar 

  36. Kumar, V., Shekhar, R., Balasubramaniam, R., and Balani, K., Microstructure evolution and texture development in thermomechanically processed Mg–Li–Al based alloys, Mater. Sci. Eng., A, 2012, vol. 547, pp. 38–50.

    Article  CAS  Google Scholar 

  37. Lin, M., Tsai, C., and Uan, J., Converting hcp Mg–Al–Zn alloy into bcc Mg–Li–Al–Zn alloy by electrolytic deposition and diffusion of reduced lithium atoms in a molten salt electrolyte LiCl-KCl, Scr. Mater., 2007, vol. 56, no. 7, pp. 597–600.

    Article  CAS  Google Scholar 

  38. Song, G.S., Staiger, M., and Kral, M., Some new characteristics of the strengthening phase in β-phase magnesium-lithium alloys containing aluminum and beryllium, Mater. Sci. Eng., A, 2004, vol. 371, nos. 1–2, pp. 371–376.

    Article  Google Scholar 

  39. Muga, C. and Zhang, Z., Strengthening mechanisms of magnesium-lithium based alloys and composites, Adv. Mater. Sci. Eng., 2016, vol. 2016, article ID 1078187.

    Article  Google Scholar 

  40. Chiang, C.-T., Shyong, L., and Chun-Lin, C., Rolling route for refining grains of superlight Mg-Li alloys containing Sc and Be, Trans. Nonferrous Met. Soc. China, 2010, vol. 20, no. 8, pp. 1374–1379.

    Article  CAS  Google Scholar 

  41. Chang, T.-C., Wang, J.-Y., Chu, C.-L., and Lee, S., Mechanical properties and microstructures of various Mg–Li alloys, Mater. Lett., 2006, vol. 60, no. 27, pp. 3272–3276.

    Article  CAS  Google Scholar 

  42. Balogh, L., Figueiredo, R.B., Ungár, T., and Langdon, T.G., The contributions of grain size, dislocation density and twinning to the strength of a magnesium alloy processed by ECAP, Mater. Sci. Eng., A, 2010, vol. 528, no. 1, pp. 533–538.

    Article  Google Scholar 

Download references

Funding

The authors greatly acknowledge the financial support by the lightweight metal platform (DC1720001) and Anhui senior talent (DT18100044) program.

Author information

Authors and Affiliations

Authors

Contributions

S.S.A. Shah and H. Sang contributed equally to this work.

Corresponding authors

Correspondence to H. M. Jing or G. S. Song.

Ethics declarations

The authors declare to have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, S.S., Sang, H., Sun, B.L. et al. Microhardness and Texture Evolution of Ultralight Mg–Li Alloy Processed by Cold Rolling. Russ. J. Non-ferrous Metals 61, 280–290 (2020). https://doi.org/10.3103/S106782122003013X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106782122003013X

Keywords:

Navigation