Skip to main content
Log in

Drain Source-Engineered Double-Gate Tunnel FET for Improved Performance

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The present study proposes an approach to enhance the DC and RF performance parameters of a double-gate tunnel field-effect transistor (DGTFET). The approach integrates an extended source with stacked drain layers of varying doping concentrations. This integration results in a drain-engineered extended source double-gate tunnel FET (DE-ES-DGTFET), demonstrating low ambipolarity and abrupt switching. The source and drain engineering enable the device to increase the ON-current while simultaneously reducing ambipolarity due to the large tunneling area with different drain doping concentrations. The optimization of the device's performance parameters was carried out by varying the doping concentration of the stacked drain, source length, and thickness of the drain. The proposed device achieved significant improvements compared to conventional DGTFETs, including a two-decade reduction in ambipolar current, an order of improvement in the ON-current (ION) of ~ 10−5 A/µm, two orders of reduction in ambipolarity (IAmb) 5.91 × 10−17 A/µm, two orders of enhancement in ratio ION/IOFF of − 1013, a subthreshold swing (SS) of 23.3 mV/dec, and nearly a two-fold increase in cut-off frequency (fT), and a transit time (\(\tau\)) ~ 80 ps have been accomplished.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. D.J. Frank, R.H. Dennard, E. Nowak, P.M. Solomon, Y. Taur, and S.P. Wong, Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE 89, 259 (2001).

    Article  CAS  Google Scholar 

  2. C.W. Pearce and D.S. Yaney, Short-channel effects in MOSFET’s. IEEE Electron Device Lett. 6, 326–328 (1985).

    Article  Google Scholar 

  3. K.K. Young, Short-channel effect in fully depleted SOI MOSFETs. IEEE Trans. Electron Devices 36, 399 (1989).

    Article  Google Scholar 

  4. Y. Taur, D. Buchanan, W. Chen, D. Frank, K. Ismail, S.H. Lo, G. Sai-Halasz, R. Viswanathan, H.J. Wann, S. Wind, and H.S. Wong, CMOS scaling into the nanometer regime. Proc. IEEE 85, 486 (1997).

    Article  Google Scholar 

  5. S.A. Loan, S. Qureshi, and S.S.K. Iyer, A novel partial-ground plane based MOSFET on selective buried oxide: a 2-D simulation study. IEEE Trans. Electron Devices 57, 671 (2010).

    Article  Google Scholar 

  6. E. Goel, S. Kumar, B. Singh, K. Singh, and S. Jit, Two-dimensional model for the subthreshold current and subthreshold swing of graded-channel dual-material double-gate (GCDMDG) MOSFETs. Superlattices Microstruct. 106, 147 (2017).

    Article  CAS  Google Scholar 

  7. K.P. Pradhan, S.K. Mohapatra, P.K. Sahu, and D.K. Behera, Impact of high-k gate dielectric on analog and RF performance of nanoscale DG-MOSFET. Microelectron. J. 45, 144 (2014).

    Article  CAS  Google Scholar 

  8. J. Appenzeller, Y.M. Lin, J. Knoch, and P. Avouris, Band-to-band tunneling in carbon nanotube field-effect transistors. Phys. Rev. Lett. 93(196), 805–811 (2004).

    Google Scholar 

  9. K. Boucart and A.M. Ionescu, Double-gate tunnel FET with high-gate dielectric. IEEE Trans. Electron Devices 54, 1725 (2007).

    Article  CAS  Google Scholar 

  10. A.M. Ionescu and H. Riel, Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479, 329 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. S. Saurabh and M.J. Kumar, Fundamentals Tunnel Field-Effect Transistors (Boca Raton, FL USA: CRC Press, 2016).

    Book  Google Scholar 

  12. Y. Zhu and M.K. Hudait, Low-power tunnel field effect transistors using mixed As and Sb based heterostructures. Nanotechnol. Rev. 2, 637 (2013).

    Article  CAS  Google Scholar 

  13. F. Horst, A. Parokhnejad, B. Iñíguez, and A. Kloes, An area equivalent WKB approach to calculate the B2B tunneling probability for a numerical robust implementation in TFET compact models. 2018 25th International Conference "Mixed Design of Integrated Circuits and System" (MIXDES) (2018), p. 45

  14. R. Pandey and S. Mookerjea, Opportunities and challenges of tunnel FETs. IEEE Trans. Circuits Syst. I Regul. Pap. 63, 2128 (2016).

    Article  Google Scholar 

  15. U.E. Avci, D.H. Morris, and I.A. Young, Tunnel field-effect transistors: prospects and challenges. IEEE J. Electron Devices Soc. 3, 88 (2015).

    Article  Google Scholar 

  16. S.H. Kim, H. Kam, C. Hu, and T.-J.K. Liu, Germanium-source tunnel field-effect transistors with record high Ion/Ioff. Symposium on VLSI Technology (2009), p. 178

  17. S. Chen, H. Liu, S. Wang, W. Li, X. Wang, and L. Zhao, Analog/RF performance of t-shape gate dual-source tunnel field-effect transistor. Nanoscale Res. Lett. 13, 321 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  18. M.A. Tajally and M.A. Karami, TFET performance optimization using gate work function engineering. Indian J. Phys. 93, 1123 (2019).

    Article  CAS  Google Scholar 

  19. W.Y. Choi and W. Lee, Hetero-gate-dielectric tunneling field effect transistors. IEEE Trans. Electron Devices 57, 2317 (2010).

    Article  Google Scholar 

  20. T. Joshi, Y. Singh, and B. Singh, Extended-source double-gate tunnel FET with improved DC and analog/RF performance. IEEE Trans. Electron Devices 67, 1873 (2020).

    Article  CAS  Google Scholar 

  21. A. Kaur and G. Saini, Design and analysis of a novel asymmetric source dual-material DG-TFET with germanium pocket. Silicon 15, 2889 (2023).

    Article  CAS  Google Scholar 

  22. P. Pandey, R. Vishnoi, and M.J. Kumar, A full range dual material gate tunnel field effect transistor drain current model considering both source and drain depletion region band-to-band tunneling. J. Comput. Electron. 14, 280 (2015).

    Article  Google Scholar 

  23. S. Singh and B. Raj, Design and analysis of a heterojunction vertical t-shaped tunnel field effect transistor. J. Electron. Mater. 48, 6253 (2019).

    Article  CAS  Google Scholar 

  24. Ashita, S.A. Loan, and M. Rafat, A high-performance inverted-c tunnel junction FET with source–channel overlap pockets. IEEE Trans. Electron Devices 65, 763 (2018).

    Article  CAS  Google Scholar 

  25. S. Garg and S. Saurabh, Suppression of ambipolar current in tunnel FETs using drain-pocket: proposal and analysis. Superlattices Microstruct. 113, 261 (2018).

    Article  CAS  Google Scholar 

  26. M.R.U. Shaikh, and S.A. Loan, Drain-engineered TFET with fully suppressed ambipolarity for high-frequency application. IEEE Trans. Electron Devices 66, 1628 (2019).

    Article  Google Scholar 

  27. D.B. Abdi and M.J. Kumar, controlling ambipolar current in tunneling FETs using overlapping gate-on-drain. IEEE J. Electron Devices Soc. 2, 187 (2014).

    Article  Google Scholar 

  28. S. Sahay and M.J. Kumar, Controlling the drain side tunnelling width to reduce ambipolar current in tunnel FETs using heterodielectric box. IEEE Trans. Electron Devices 62, 3882 (2015).

    Article  Google Scholar 

  29. V. Vijayvargiya and S. Kumar Vishvakarma, Effect of drain doping profile on double-gate tunnel field-effect transistor and its influence on device RF performance. IEEE Trans. Nanotechnol. 13, 974 (2014).

    Article  CAS  Google Scholar 

  30. J. Li, Q. Xie, A. Huang, and Z. Wang, Effects of drain doping profile and gate structure on an ambipolar current of TFET. IEEE 3rd International Conference Electronics Technology (2020), p. 20

  31. S. Ashish, D. Sharma, N.B.Y. Kumar, and M.H. Vasantha, Performance enhancement of novel InAs/Si hetero double-gate tunnel FET using Gaussian doping. IEEE Trans. Electron Devices 63, 288295 (2016).

    Google Scholar 

  32. N. Bagga, N. Chauhan, S. Banchhor, D. Gupta, and S. Dasgupta, Demonstration of a novel tunnel FET with channel sandwiched by drain. Semicond. Sci. Technol. 35, 015008 (2020).

    Article  CAS  Google Scholar 

  33. S. Sahoo, S. Dash, S. Ranjan Routray, and G.P. Mishra, Impact of drain doping engineering on ambipolar and high-frequency performance of ZHP line-TFET. Semicond. Sci. Technol. 35, 065003 (2020).

    Article  CAS  Google Scholar 

  34. Synopsys Inc., Sentauras’s Performance Device User Guide (Mountain View: Synopsys Inc, 2020).

    Google Scholar 

  35. E.P. Gusev, C. Cabral, M. Copel, C. D’Emic, and M. Gribelyuk, Ultrathin HfO2 films grown on silicon by atomic layer deposition for advanced gate dielectrics applications. Microelectron. Eng. 69, 145 (2003).

    Article  CAS  Google Scholar 

  36. D.W. McNeill, S. Bhattacharya, H. Wadsworth, F.H. Ruddell, S.J.N. Mitchell, B.M. Armstrong, and H.S. Gamble, Atomic layer deposition of hafnium oxide dielectrics on silicon and germanium substrates. J. Mater. Sci. Mater. Electron. 19, 119–123 (2008).

    Article  CAS  Google Scholar 

  37. P.C. Jamison, T. Tsunoda, T.A. Vo, J. Li, H. Jagannathan, S.R. Shinde, V.K. Paruchuri, and D. Gall, SiO2 free HfO2 gate dielectrics by physical vapor deposition. IEEE Trans. Electron Devices 62, 2878 (2015).

    Article  CAS  Google Scholar 

  38. K. Kumar, A. Kumar, V. Kumar, A. Jain, and S.C. Sharma, Ambipolarity suppression of band gap and gate dielectric engineered novel Si0.2Ge0.8/GaAs JLTFET using gate overlap technique. Silicon 15, 7837 (2023).

    Article  CAS  Google Scholar 

  39. A. Acharya, S. Dasgupta, and A. Bulusu, A novel VDSAT extraction method for tunnel FETs and its implication on analog design. IEEE Trans. Electron Devices 64, 629 (2016).

    Article  Google Scholar 

  40. R. Narang, M. Saxena, R.S. Gupta, and M. Gupta, Impact of temperature variations on the device and circuit performance of tunnel FET: a simulation study. IEEE Trans. Nanotechnol. 12, 951 (2013).

    Article  CAS  Google Scholar 

  41. W. Cao, C.J. Yao, G.F. Jiao, D. Huang, H.Y. Yu, and M.F. Li, Improvement in reliability of tunneling field-effect transistor with p-n-i-n structure. IEEE Trans. Electron Devices 58, 2122 (2011).

    Article  CAS  Google Scholar 

  42. S.C. Kang, D.W. Lim, S.J. Kang, S.K. Lee, C.H. Choi, D.S. Lee, and B.H. Lee, Hot-carrier degradation estimation of a silicon-on insulator tunneling FET using ambipolar characteristics. IEEE Electron Device Lett. 40, 1716 (2019).

    Article  CAS  Google Scholar 

  43. T. Chawla, M. Khosla, and B. Raj, Extended gate to source overlap heterojunction vertical TFET: design, analysis, and optimization with process parameter variations. Mater. Sci. Semicond. Process. 145, 106643 (2022).

    Article  CAS  Google Scholar 

  44. G. Singh, S.I. Amin, S. Anand, and R.K. Sarin, Design of Si0.5Ge0.5 based tunnel field effect transistor and its performance evaluation. Superlattices Microstruct. 92, 143 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arashpreet Kaur.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, A., Saini, G. Drain Source-Engineered Double-Gate Tunnel FET for Improved Performance. J. Electron. Mater. (2024). https://doi.org/10.1007/s11664-024-11109-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11664-024-11109-6

Keywords

Navigation