Skip to main content
Log in

CNT bundle-based thin intracochlear electrode array

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Objective: It is known that the insertion of the intracochlear electrode is critical procedure because the damage around cochlear structures can deteriorate hearing restoration. To reduce the trauma during the electrode insertion surgery, we developed a thin and flexible intracochlear electrode array constructed with carbon nanotube (CNT) bundles. Methods: Each CNT bundle was used for an individual electrode channel after coated with parylene C for insulation. By encapsulating eight CNT bundles with silicone elastomer, an 8-channel intracochlear electrode array was fabricated. The mechanical and electrochemical characteristics were assessed to evaluate the flexibility and feasibility of the electrode as a stimulation electrode. The functionality of the electrode was confirmed by electrically evoked auditory brainstem responses (eABR) recorded from a rat. Results: The proposed electrode has a thickness of 135 μm at the apex and 395 μm at the base. It was demonstrated that the CNT bundle-based electrodes require 6-fold the lower insertion force than metal wire-based electrodes. The electrode impedance and the cathodic charge storage capacitance (CSCc) were 2.70 kΩ ∠-20.4° at 1 kHz and − 708 mC/cm2, respectively. The eABR waves III and V were observed when stimulation current is greater than 50 μA. Conclusion: A thin and flexible CNT bundle-based intracochlear electrode array was successfully developed. The feasibility of the proposed electrode was shown in terms of mechanical and electrochemical characteristics. A proposed CNT bundle-based intracochlear electrode may reduce the risk of trauma during electrode insertion surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • S.K. An, S.-I. Park, S.B. Jun, C.J. Lee, K.M. Byun, J.H. Sung, et al., Design for a simplified cochlear implant system. IEEE Trans. Biomed. Eng. 54(6), 973–982 (2007)

    Article  Google Scholar 

  • A. Aschendorff, T. Klenzner, B. Richter, R. Kubalek, H. Nagursky, R. Laszig, Evaluation of the HiFocus® electrode array with positioner in human temporal bones. J. Laryngol. Otol. 117(7), 527–531 (2003)

    Article  Google Scholar 

  • E. Bas, J. Bohorquez, S. Goncalves, E. Perez, C.T. Dinh, C. Garnham, et al., Electrode array-eluted dexamethasone protects against electrode insertion trauma induced hearing and hair cell losses, damage to neural elements, increases in impedance and fibrosis: A dose response study. Hear. Res. 337, 12–24 (2016)

    Article  Google Scholar 

  • S. Berrettini, F. Forli, S. Passetti, Preservation of residual hearing following cochlear implantation: Comparison between three surgical techniques. J. Laryngol. Otol. 122(3), 246–252 (2008)

    Article  Google Scholar 

  • A. Bianco, K. Kostarelos, C.D. Partidos, M. Prato, Biomedical applications of functionalised carbon nanotubes. Chem. Commun. 5, 571–577 (2005)

    Article  Google Scholar 

  • P. Busby, K. Plant, L. Whitford, Electrode impedance in adults and children using the nucleus 24 cochlear implant system. Cochlear Implant. Int. 3(2), 87–103 (2002)

    Article  Google Scholar 

  • J.A. Chikar, J.L. Hendricks, S.M. Richardson-Burns, Y. Raphael, B.E. Pfingst, D.C.J.B. Martin, The use of a dual PEDOT and RGD-functionalized alginate hydrogel coating to provide sustained drug delivery and improved cochlear implant function. Biomater. 33(7), 1982–1990 (2012)

    Article  Google Scholar 

  • H. Choo, Y. Jung, Y. Jeong, H.C. Kim, B.-C.J.C.L. Ku, Fabrication and applications of carbon nanotube fibers. Carbon Lett. 13(4), 191–204 (2012)

    Article  Google Scholar 

  • M.F. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Carbon nanotubes: Present and future commercial applications. Science 339(6119), 535–539 (2013)

    Article  Google Scholar 

  • A.A. Eshraghi, N.W. Yang, T.J. Balkany, Comparative study of cochlear damage with three perimodiolar electrode designs. Laryngoscope 113(3), 415–419 (2003)

    Article  Google Scholar 

  • L.M. Friesen, R.V. Shannon, D. Baskent, X. Wang, Speech recognition in noise as a function of the number of spectral channels: Comparison of acoustic hearing and cochlear implants. J. Acoust. Soc. Am. 110(2), 1150–1163 (2001)

    Article  Google Scholar 

  • S. Gallégo, B. Frachet, C. Micheyl, E. Truy, L. Collet, Cochlear implant performance and electrically-evoked auditory brain-stem response characteristics. Electroencephalogr. Clin. Neurophysiol. Potential Sect. 108(6), 521–525 (1998)

    Article  Google Scholar 

  • B.J. Gantz, C. Turner, K.E. Gfeller, M.W. Lowder, Preservation of hearing in cochlear implant surgery: Adva ntages of combined electrical and acoustical speech processing. Laryngoscope 115(5), 796–802 (2005)

    Article  Google Scholar 

  • W. Gstoettner, J. Kiefer, W.-D. Baumgartner, S. Pok, S. Peters, O. Adunka, Hearing preservation in cochlear implantation for electric acoustic stimulation. Acta Otolaryngol. 124(4), 348–352 (2004)

    Article  Google Scholar 

  • T.M. Gwon, K.S. Min, J.H. Kim, S.H. Oh, H.S. Lee, M.-H. Park, et al., Fabrication and evaluation of an improved polymer-based cochlear electrode array for atraumatic insertion. Biomed. Microdevices 17(2), 1–12 (2015)

    Article  Google Scholar 

  • S.-I. Hatsushika, R.K. Shepherd, Y.C. Tong, G.M. Clark, S. Funasaka, Dimensions of the scala tympani in the human and cat with reference to cochlear implants. Ann. Otol. Rhinol. Laryngol. 99(11), 871–876 (1990)

    Article  Google Scholar 

  • S. Helbig, Y. Adel, T. Rader, T. Stöver, U. Baumann, Long-term hearing preservation outcomes after cochlear implantation for electric-acoustic stimulation. Otol. Neurotol. 37(9), e353–e359 (2016)

    Article  Google Scholar 

  • S. Iijima, Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991)

    Article  Google Scholar 

  • C. James, K. Albegger, R. Battmer, S. Burdo, N. Deggouj, O. Deguine, et al., Preservation of residual hearing with cochlear implantation: How and why. Acta Otolaryngol. 125(5), 481–491 (2005)

    Article  Google Scholar 

  • C. Jolly, J. Mueller, S. Helbig, S. Usami, New trends with cochlear implant electrodes. Otol. Jpn. 20(3), 239–246 (2010)

    Google Scholar 

  • J. Kang, L. Chen, Y. Hou, C. Li, T. Fujita, X. Lang, et al., Electroplated thick manganese oxide films with ultrahigh capacitance. Adv. Eng. Mater. 3(7), 857–863 (2013)

    Article  Google Scholar 

  • H. Kha, B. Chen, G.M. Clark, R. Jones, Stiffness properties for nucleus standard straight and contour electrode arrays. Med. Eng. Phys. 26(8), 677–685 (2004)

    Article  Google Scholar 

  • K. Koziol, J. Vilatela, A. Moisala, M. Motta, P. Cunniff, M. Sennett, et al., High-performance carbon nanotube fiber. Science 318(5858), 1892–1895 (2007)

    Article  Google Scholar 

  • X. Lang, A. Hirata, T. Fujita, M. Chen, Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat. Nanotechnol. 6(4), 232 (2011)

    Article  Google Scholar 

  • A.-A.D. Lassig, T.A. Zwolan, S.A. Telian, Cochlear implant failures and revision. Otol. Neurotol. 26(4), 624–634 (2005)

    Article  Google Scholar 

  • Y.-L. Li, I.A. Kinloch, A.H. Windle, Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 304(5668), 276–278 (2004)

    Article  Google Scholar 

  • X. Li, Y. Fan, F. Watari, Current investigations into carbon nanotubes for biomedical application. Biomed. Mater. 5(2), 022001 (2010)

    Article  Google Scholar 

  • K.S. Min, S.H. Oh, M.-H. Park, J. Jeong, S.J. Kim, A polymer-based multichannel cochlear electrode array. Otol. Neurotol. 35(7), 1179–1186 (2014)

    Google Scholar 

  • R.A. Parker, S. Negi, T. Davis, E.W. Keefer, H. Wiggins, P.A. House, B. Greger, The use of a novel carbon nanotube coated microelectrode array for chronic intracortical recording and microstimulation. 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, p. 791–794 (2012)

  • M. Polak, A.A. Eshraghi, O. Nehme, S. Ahsan, J. Guzman, R.E. Delgado, et al., Evaluation of hearing and auditory nerve function by combining ABR, DPOAE and eABR tests into a single recording session. J. Neurosci. Methods 134(2), 141–149 (2004)

    Article  Google Scholar 

  • S.J. Rebscher, M. Heilmann, W. Bruszewski, N.H. Talbot, R.L. Snyder, M.M. Merzenich, Strategies to improve electrode positioning and safety in cochlear implants. IEEE Trans. Biomed. Eng. 46(3), 340–352 (1999)

    Article  Google Scholar 

  • S.J. Rebscher, A. Hetherington, B. Bonham, P. Wardrop, D. Whinney, P.A. Leake, Considerations for the design of future cochlear implant electrode arrays: Electrode array stiffness, size and depth of insertion. J. Rehabil. Res. Dev. 45(5), 731 (2008)

    Article  Google Scholar 

  • H.-X. Ren, X. Chen, J.-H. Liu, N. Gu, X.-J. Huang, Toxicity of single-walled carbon nanotube: How we were wrong? Mater. Today 13(1), 6–8 (2010)

    Article  Google Scholar 

  • J.J. Roland, T.M. Magardino, J. Go, D. Hillman, Effects of glycerin, hyaluronic acid, and hydroxypropyl methylcellulose on the spiral ganglion of the Guinea pig cochlea. Ann. Otol. Rhinol. Laryngol. Suppl. 166, 64–68 (1995)

    Google Scholar 

  • H. Skarzynski, A. Lorens, M. Matusiak, M. Porowski, P.H. Skarzynski, C.J. James, Cochlear implantation with the nucleus slim straight electrode in subjects with residual low-frequency hearing. Ear Hear. 35(2), e33–e43 (2014)

    Article  Google Scholar 

  • S. Smart, A. Cassady, G. Lu, D. Martin, The biocompatibility of carbon nanotubes. Carbon 44(6), 1034–1047 (2006)

    Article  Google Scholar 

  • F.A. Spelman, Cochlear electrode arrays: Past, present and future. Audiol. Neurotol. 11(2), 77–85 (2006)

    Article  Google Scholar 

  • V. Srinivasan, J.W. Weidner, An electrochemical route for making porous nickel oxide electrochemical capacitors. J. Electrochem. Soc. 144(8), L210–L213 (1997)

    Article  Google Scholar 

  • S. Tang, Y. Tang, L. Zhong, K. Murat, G. Asan, J. Yu, et al., Short-and long-term toxicities of multi-walled carbon nanotubes in vivo and in vitro. J. Appl. Toxicol. 32(11), 900–912 (2012)

    Article  Google Scholar 

  • M. Thorne, A.N. Salt, J.E. DeMott, M.M. Henson, O. Henson, S.L. Gewalt, Cochlear fluid space dimensions for six species derived from reconstructions of three-dimensional magnetic resonance images. Laryngoscope 109(10), 1661–1668 (1999)

    Article  Google Scholar 

  • F. Vitale, S.R. Summerson, B. Aazhang, C. Kemere, M. Pasquali, Neural stimulation and recording with bidirectional, soft carbon nanotube fiber microelectrodes. ACS Nano 9(4), 4465–4474 (2015)

    Article  Google Scholar 

  • K. Wang, H.A. Fishman, H. Dai, J.S. Harris, Neural stimulation with a carbon nanotube microelectrode array. Nano Lett. 6(9), 2043–2048 (2006)

    Article  Google Scholar 

  • P. Wardrop, D. Whinney, S.J. Rebscher, W. Luxford, P. Leake, A temporal bone study of insertion trauma and intracochlear position of cochlear implant electrodes. II: Comparison of Spiral Clarion™ and HiFocus II™ electrodes. Hear. Res. 203(1), 68–79 (2005a)

    Article  Google Scholar 

  • P. Wardrop, D. Whinney, S.J. Rebscher, J.T. Roland Jr., W. Luxford, P.A.J.H.R. Leake, A temporal bone study of insertion trauma and intracochlear position of cochlear implant electrodes. I: Comparison of nucleus banded and nucleus contour™ electrodes. Hear. Res. 203(1–2), 54–67 (2005b)

    Article  Google Scholar 

  • B.S. Wilson, C.C. Finley, D.T. Lawson, R.D. Wolford, D.K. Eddington, W.M. Rabinowitz, Better speech recognition with cochlear implants. Nature 352(6332), 236–238 (1991)

    Article  Google Scholar 

  • W. Yang, P. Thordarson, J.J. Gooding, S.P. Ringer, F. Braet, Carbon nanotubes for biological and biomedical applications. Nanotechnol. 18(41), 412001 (2007)

    Article  Google Scholar 

  • F.-G. Zeng, S. Rebscher, W. Harrison, X. Sun, H. Feng, Cochlear implants: System design, integration, and evaluation. IEEE Rev. Biomed. Eng. 1, 115–142 (2008)

    Article  Google Scholar 

  • J. Zhang, S. Bhattacharyya, N. Simaan, Model and parameter identification of friction during robotic insertion of cochlear-implant electrode arrays. 2009 IEEE International Conference on Robotics and Automation, p. 3859–3864 (2009)

Download references

Acknowledgements

This work was supported in part by the CABMC grant funded by the Defense Acquisition Program Administration (UD170030ID) of Korea, in part by Business for Startup growth and technological development (TIPS Program) funded by Korea Small and Medium Business Administration in 2017 under Grants No. S2442573, in part by the Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (2017-0-00432, Development of non-invasive integrated BCI SW platform to control home appliances and external devices by user’s thought via AR/VR interface), in part by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI17C1648), and in part by the National Research Foundation (NRF) of Korea (NRF-2017R1A2B4006604), MEST as GFP (CISS-2012M3A6A054204).

We also thank Dr. Taek Dong Chung at Department of Chemistry, Seoul National University, for his generous comments on electrochemical properties of electrode materials. Also, we thank Shinyong Shim at Department of Electrical and Computer Engineering, Seoul National University, for offering a custom-made pulse generator.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yoonseob Lim or Sang Beom Jun.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 189 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, G.J., Gwon, T.M., Kim, D.H. et al. CNT bundle-based thin intracochlear electrode array. Biomed Microdevices 21, 27 (2019). https://doi.org/10.1007/s10544-019-0384-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-019-0384-y

Keywords

Navigation