Skip to main content
Log in

Effect of Pyrene-1 Boronic Acid Functionalization on the Electrical Characteristics of Carbon Nanotube Field-Effect Transistor

  • Original Article - Electronics, Magnetics and Photonics
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Carbon nanotube field-effect transistor (CNT-FET) based sensor devices are widely used in sensing applications of biomolecules in high sensitivity. In addition, covalent functionalization process can increase the interaction between the CNTs and biological molecules. In this article, we present the effect of boronic acid functionalization on the electrical properties of the CNT-FET due to boronic acid and its derivatives have been widely used for the glucose recognition. For this purpose, CNT-FET transistors were fabricated on SiO2/Si substrates utilising high purity semiconducting nanotubes as the channel layer and functionalized with pyrene-1-boronic acid. It was found that boronic acid functionalization causes a variation in electrical parameters of CNT-FET transistors such as conductance, transconductance, threshold voltage, field effect mobility, resistance, hysteresis gap, and charge transfer of carriers per unit length. The results show that pyrene-1-boronic acid treatment was observed to have a significant beneficial effect on the electrical properties of the CNT-FET and pyrene-1-boronic acid functionalized CNT-FET sensor devices may have great potential for glucose sensing applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. IDF_Atlas_10th_Edition_2021.pdf - IDF Diabetes Atlas. https://www.diabetesatlas.org.

  2. Williams, R., Karuranga, S., Malanda, B., Saeedi, P., Basit, A., Besançon, S., Colagiuri, S.: Global and regional estimates and projections of diabetes-related health expenditure: results from the International Diabetes Federation Diabetes Atlas. Diabetes Res. Clin. Pract. 162, 108072 (2020)

    Article  Google Scholar 

  3. Chakraborty, P., Dhar, S., Deka, N., Debnath, K., S. P.: Mondal Non-enzymatic salivary glucose detection using porous CuO nanostructures. Sens. Actuators B: Chem. 302, 127134 (2020). https://doi.org/10.1016/j.snb.2019.127134

    Article  CAS  Google Scholar 

  4. Coyle, V.E., Kandjani, A.E., Field, M.R., Hartley, P., Chen, M., Sabri, Y.M., Bhargava, S.K.: Co3O4 needles on Au honeycomb as a non-invasive electrochemical biosensor for glucose in saliva. Biosens. Bioelectron. 141, 111479 (2019)

    Article  CAS  Google Scholar 

  5. Yang, M., Ma, C., Ding, S., Zhu, Y., Shi, G., Zhu, A.: Rational design of stimuli-responsive polymers modified nanopores for selective and sensitive determination of salivary glucose. Anal. Chem. 91(21), 14029–14035 (2019)

    Article  CAS  Google Scholar 

  6. Diouf, A., Bouchikhi, B., El Bari, N.: A nonenzymatic electrochemical glucose sensor based on molecularly imprinted polymer and its application in measuring saliva glucose. Mater. Sci. Eng., C 98, 1196–1209 (2019)

    Article  CAS  Google Scholar 

  7. Toi, P.T., Trung, T.Q., Dang, T.M.L., Bae, C.W., Lee, N.E.: Highly electrocatalytic, durable, and stretchable nanohybrid fiber for on-body sweat glucose detection. ACS Appl. Mater. Interfaces. 11(11), 10707–10717 (2019)

    Article  CAS  Google Scholar 

  8. Wang, Y., Wang, X., Lu, W., Yuan, Q., Zheng, Y., Yao, B.A.: thin film polyethylene terephthalate (PET) electrochemical sensor for detection of glucose in sweat. Talanta 198, 86–92 (2019)

    Article  CAS  Google Scholar 

  9. Cao, Q., Liang, B., Tu, T., Wei, J., Fang, L., Ye, X.: Three-dimensional paper-based microfluidic electrochemical integrated devices (3D-PMED) for wearable electrochemical glucose detection. RSC Adv. 9(10), 5674–5681 (2019)

    Article  CAS  Google Scholar 

  10. Bruen, D., Delaney, C., Florea, L., Diamond, D.: Glucose sensing for diabetes monitoring: recent developments. Sensors 17(8), 1866 (2017)

    Article  Google Scholar 

  11. Allen, B.L., Kichambare, P.D., Star, A.: Carbon nanotube field-effect-transistor-based biosensors. Adv. Mater. 19(11), 1439–1451 (2007)

    Article  CAS  Google Scholar 

  12. Ahmad, M., Anguita, J.V., Stolojan, V., Corless, T., Chen, J.S., Carey, J.D., Silva, S.R.P.: High quality carbon nanotubes on conductive substrates grown at low temperatures. Adv. Func. Mater. 25(28), 4419–4429 (2015)

    Article  CAS  Google Scholar 

  13. Choi, W.B., Cheong, B.H., Kim, J.J., Chu, J., Bae, E.: Selective growth of carbon nanotubes for nanoscale transistors. Adv. Func. Mater. 13(1), 80–84 (2003)

    Article  CAS  Google Scholar 

  14. Hong, S., Myung, S.: A flexible approach to mobility. Nat. Nanotechnol. 2(4), 207–208 (2007)

    Article  CAS  Google Scholar 

  15. Tans, S.J., Verschueren, A.R., Dekker, C.: Room-temperature transistor based on a single carbon nanotube. Nature 393(6680), 49–52 (1998)

    Article  CAS  Google Scholar 

  16. Martel, R., Schmidt, T., Shea, H.R., Hertel, T., Avouris, P.: Single-and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 73(17), 2447–2449 (1998)

    Article  CAS  Google Scholar 

  17. Collins, P.G., Bradley, K., Ishigami, M., Zettl, D.A.: Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287(5459), 1801–1804 (2000)

    Article  CAS  Google Scholar 

  18. Kong, J., Chapline, M.G., Dai, H.: Functionalized carbon nanotubes for molecular hydrogen sensors. Adv. Mater. 13(18), 1384–1386 (2001)

    Article  CAS  Google Scholar 

  19. Star, A., Han, T.R., Gabriel, J.C.P., Bradley, K., Grüner, G.: Interaction of aromatic compounds with carbon nanotubes: correlation to the Hammett parameter of the substituent and measured carbon nanotube FET response. Nano Lett. 3(10), 1421–1423 (2003)

    Article  CAS  Google Scholar 

  20. Someya, T., Small, J., Kim, P., Nuckolls, C., Yardley, J.T.: Alcohol vapor sensors based on single-walled carbon nanotube field effect transistors. Nano Lett. 3(7), 877–881 (2003)

    Article  CAS  Google Scholar 

  21. Aikawa, S., Xiang, R., Einarsson, E., Chiashi, S., Shiomi, J., Nishikawa, E., Maruyama, S.: Facile fabrication of all-SWNT field-effect transistors. Nano Res. 4(6), 580–588 (2011)

    Article  CAS  Google Scholar 

  22. Yoon, H., Ko, S., Jang, J.: Field-effect-transistor sensor based on enzyme-functionalized polypyrrole nanotubes for glucose detection. J. Phys. Chem. B 112(32), 9992–9997 (2008)

    Article  CAS  Google Scholar 

  23. James, T.D., Sandanayake, K.S., Shinkai, S.: Saccharide sensing with molecular receptors based on boronic acid. Angew. Chem., Int. Ed. Engl. 35(17), 1910–1922 (1996)

    Article  Google Scholar 

  24. Zhao, L., Huang, Q., Liu, Y., Wang, Q., Wang, L., Xiao, S., Ding, J.: Boronic acid as glucose-sensitive agent regulates drug delivery for diabetes treatment. Materials 10(2), 170 (2017)

    Article  Google Scholar 

  25. Lee, J., Ko, S., Kwon, C.H., Lima, M.D., Baughman, R.H., Kim, S.J.: Carbon nanotube yarn-based glucose sensing artificial muscle. Small 12(15), 2085–2091 (2016)

    Article  CAS  Google Scholar 

  26. Chen, J.S., Stolojan, V., Silva, S.R.P.: Towards type-selective carbon nanotube growth at low substrate temperature via photo-thermal chemical vapour deposition. Carbon 84, 409–418 (2015)

    Article  CAS  Google Scholar 

  27. Dresselhaus, M.S., Dresselhaus, G., Jorio, A., Souza Filho, A.G., Pimenta, M.A., Saito, R.: Single nanotube Raman spectroscopy. Acc. Chem. Res. 35(12), 1070–1078 (2002)

    Article  CAS  Google Scholar 

  28. Chen, G., Qiu, J., Xu, J., Fang, X.A., Liu, Y., Liu, S., Zhu, F.: A novel probe based on phenylboronic acid functionalized carbon nanotubes for ultrasensitive carbohydrate determination in biofluids and semi-solid biotissues. Chem. Sci. 7(2), 1487–1495 (2016)

    Article  CAS  Google Scholar 

  29. Lerner, M.B., Kybert, N., Mendoza, R., Villechenon, R., Bonilla Lopez, M.A., Charlie Johnson, A.T.: Scalable, non-invasive glucose sensor based on boronic acid functionalized carbon nanotube transistors. Appl. Phys. Lett. 102(18), 183113 (2013)

    Article  Google Scholar 

  30. Norrild, J.C., Søtofte, I.: Design, synthesis, and structure of new potential electrochemically active boronic acid-based glucose sensors. J. Chem. Soc., Perkin Trans. 2(2), 303–311 (2002)

    Article  Google Scholar 

  31. Williams, G.T., Kedge, J.L., Fossey, J.S.: Molecular boronic acid-based saccharide sensors. ACS sensors 6(4), 1508–1528 (2021)

    Article  CAS  Google Scholar 

  32. Wang, W., Gao, X., Wang, B.: Boronic acid-based sensors. Curr. Org. Chem. 6(14), 1285–1317 (2002)

    Article  CAS  Google Scholar 

  33. Chen, G., Qiu, J., Xu, J., Fang, X.A., Liu, Y., Liu, S., Zhu, F.: A novel probe based on phenylboronic acid functionalized carbon nanotubes for ultrasensitive carbohydrate determination in biofluids and semi-solid biotissues. Chem. Sci. 7(2), 1487–1495 (2016)

    Article  CAS  Google Scholar 

  34. Allen, C.S., Liu, G., Chen, Y., Robertson, A.W., He, K., Porfyrakis, K., Warner, J.H.: Optically enhanced charge transfer between C 60 and single-wall carbon nanotubes in hybrid electronic devices. Nanoscale 6(1), 572–580 (2014)

    Article  CAS  Google Scholar 

  35. Jorio, A., Souza Filho, A.G., Dresselhaus, G., Dresselhaus, M.S., Swan, A.K., Ünlü, M.S., Saito, R.: G-band resonant Raman study of 62 isolated single-wall carbon nanotubes. Phys.Rev. B 65(15), 155412 (2002)

    Article  Google Scholar 

  36. Xuan, C.T., Thuy, N.T., Luyen, T.T., Huyen, T.T., Tuan, M.A.: Carbon nanotube field-effect transistor for DNA sensing. J. Electron. Mater. 46(6), 3507–3511 (2017)

    Article  CAS  Google Scholar 

  37. Javey, A., Wang, Q., Kim, W., and Dai, H.: In: IEEE International Electron Devices Meeting, pp. 1–4 (2004)

  38. Tans, S.J., Verschueren, A.R.M., Dekker, C.: Room-temperature transistor based on a single carbon nanotube. Nat. 393(6680), 49–52 (1998)

    Article  CAS  Google Scholar 

  39. Stefansson, S., Stefansson, L.A., Chung, S.W., Ko, K., Kwon, H.H., Ahn, S.N.: Evaluation of aromatic boronic acids as ligands for measuring diabetes markers on carbon nanotube field-effect transistors. J. Nanotechnol. (2012). https://doi.org/10.1155/2012/371487

    Article  Google Scholar 

  40. Kim, J.P., Lee, B.Y., Lee, J., Hong, S., Sim, S.J.: Enhancement of sensitivity and specificity by surface modification of carbon nanotubes in diagnosis of prostate cancer based on carbon nanotube field effect transistors. Biosens. Bioelectron. 24(11), 3372–3378 (2009)

    Article  CAS  Google Scholar 

  41. Hill, A.V.: A new mathematical treatment of changes of ionic concentration in muscle and nerve under the action of electric currents, with a theory as to their mode of excitation. J. Physiol. 40(3), 190–224 (1910)

    Article  CAS  Google Scholar 

  42. Lee, H., Song, C., Hong, Y.S., Kim, M.S., Cho, H.R., Kang, T., Kim, D.H.: Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Sci. Adv. 3(3), 1601314 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

H. Altuntas gratefully acknowledges TUBITAK-BIDEB 2219 Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Altuntas.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altuntas, H., Snashall, K., Oke-Altuntas, F. et al. Effect of Pyrene-1 Boronic Acid Functionalization on the Electrical Characteristics of Carbon Nanotube Field-Effect Transistor. Electron. Mater. Lett. 19, 405–414 (2023). https://doi.org/10.1007/s13391-023-00415-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-023-00415-6

JEL Classification

Keywords

Navigation