Skip to main content
Log in

Pressure Sintering of Micro-Silver Joints in SiC Power Devices: Optimization of Processing Parameters and FEM Analysis

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The sintering process of micro-silver joints in SiC devices that operate in high temperatures has attracted considerable attention in recent years, owing to its advantages in low processing temperatures. The first part of this work carries out a thorough investigation into the effects of the processing parameters in pressure sintering on the shear strength and shear fracture surfaces of micro-silver joints. Optimization of the sintering parameters is then performed using orthogonal tests, validated by experiments, followed by an inspection of the microstructure of the sintered micro-silver joint. The second part of this work presents temperature and stress distribution analyses in the sintering process under the optimum parameters using the finite element method (FEM). The residual shear stress at the silver layer/SiC chip interface created during sintering is also examined. Results show that the shear strength of the silver joints increased significantly with the sintering temperature and time. The shear strength also increased with the sintering pressure initially, but a further increase in the sintering pressure (> 8 MPa) led to a decrease in the shear strength. Our findings demonstrate that the shear strength of the micro-silver joint may be correlated with the residual shear stress created during the sintering process. FEM showed that a further increase in sintering pressure resulted in an increase in residual shear stress, which reduced the shear strength. The optimum sintering parameters proposed for micro-silver joints based on these results are 290°C, 5 min, and 8 MPa, in which strong bonding strength of 44.31 MPa was achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. R.T. Yadlapalli, A. Kotapati, R. Kandipati, and C.S. Koritala, A review on energy efficient technologies for electric vehicle applications. J. Energy Storage. 50, 104212 (2022).

    Article  Google Scholar 

  2. L. Han, L. Liang, Y. Kang, and Y. Qiu, A review of SiC IGBT: models, fabrications, characteristics, and applications. IEEE Trans. Power Electron. 36, 2080 (2021).

    Article  ADS  Google Scholar 

  3. A. Syed-Khaja and J. Franke, Silver Sintering, CIRP Encyclopedia of Production Engineering. ed. S. Chatti, and T. Tolio (Berlin: Springer, 2018), p. 1.

    Google Scholar 

  4. K.S. Siow, Are sintered silver joints ready for use as interconnect material in microelectronic packaging? J. Electron. Mater. 43, 947 (2014).

    Article  ADS  CAS  Google Scholar 

  5. G. Liu, Y. Wu, K. Li, Y. Wang and C. Li, Development of high power SiC devices for rail traction power systems. J. Cryst. Growth 507, 442 (2019).

    Article  ADS  CAS  Google Scholar 

  6. E. van Brunt, L. Cheng, M.J. O’Loughlin, J. Richmond, V. Pala, J.W. Palmour, C.W. Tipton, and C. Scozzie, 27 kV, 20 A 4H-SiC n-IGBTs. Mater. Sci. Forum 821–823, 847 (2015).

    Article  Google Scholar 

  7. S. Piriienko, T. Röser, M. Neuburger, and A. Balakhontsev, Current source gate drivers for 3-phase VSI operated in small-scale wind turbine systems. Int. J. Electr. 141, 108160 (2022).

    Article  Google Scholar 

  8. H. Luo, N. Baker, F. Iannuzzo, and F. Blaabjerg, Die degradation effect on aging rate in accelerated cycling tests of SiC power MOSFET modules. Microelectron. Reliab. 76–77, 415 (2017).

    Article  Google Scholar 

  9. L. Yang, Y. Yang, Y. Zhang, F. Xu, J. Qiao, W. Lu, and B. Yu, Microstructure evolution and mechanical properties of the In–Sn–20Cu composite particles TLP bonding solder joints. Appl. Phys. A 126, 343 (2020).

    Article  ADS  CAS  Google Scholar 

  10. Y. Bao, A. Wu, H. Shao, Y. Zhao, and G. Zou, Effect of powders on microstructures and mechanical properties for Sn–Ag transient liquid phase bonding in air. J. Mater. Sci. Mater. Electron. 29, 10246 (2018).

    Article  CAS  Google Scholar 

  11. G. Khatibi, A. Betzwar Kotas, and M. Lederer, Effect of aging on mechanical properties of high temperature Pb-rich solder joints. Microelectron. Reliab. 85, 1 (2018).

    Article  CAS  Google Scholar 

  12. Z.X. Zhu, C.C. Li, L.L. Liao, C.K. Liu, and C.R. Kao, Au–Sn bonding material for the assembly of power integrated circuit module. J. Alloys Compd. 671, 340 (2016).

    Article  CAS  Google Scholar 

  13. Y. Gao, S. Takata, C. Chen, S. Nagao, K. Suganuma, A.S. Bahman, and F. Iannuzzo, Reliability analysis of sintered Cu joints for SiC power devices under thermal shock condition. Microelectron. Reliab. 100–101, 113456 (2019).

    Article  Google Scholar 

  14. W. Zhang, J. Chen, Z. Deng, Z. Liu, Q. Huang, W. Guo, and J. Huang, The pressureless sintering of micron silver paste for electrical connections. J. Alloys Compd. 795, 163 (2019).

    Article  CAS  Google Scholar 

  15. S.T. Chua and K.S. Siow, Microstructural studies and bonding strength of pressureless sintered nano-silver joints on silver, direct bond copper (DBC) and copper substrates aged at 300°C. J. Alloys Compd. 687, 486 (2016).

    Article  CAS  Google Scholar 

  16. H. Yang and W. Zhu, Study on the main influencing factors of shear strength of nano-silver joints. J. Mater. Res. Technol. 9, 4133 (2020).

    Article  CAS  Google Scholar 

  17. L. Yin, F. Yang, X. Bao, W. Xue, Z. Du, X. Wang, J. Cheng, H. Ji, J. Sui, X. Liu, Y. Wang, F. Cao, J. Mao, M. Li, Z. Ren, and Q. Zhang, Low-temperature sintering of Ag nanoparticles for high-performance thermoelectric module design. Nat. Energy 8, 665 (2023).

    Article  ADS  CAS  Google Scholar 

  18. C.-H. Tsai, W.-C. Huang, L.M. Chew, W. Schmitt, J. Li, H. Nishikawa, and C.R. Kao, Low-pressure micro-silver sintering with the addition of indium for high-temperature power chips attachment. J. Mater. Res. Technol. 15, 4541 (2021).

    Article  CAS  Google Scholar 

  19. M. Ahamed, M.S. AlSalhi, and M.K.J. Siddiqui, Silver nanoparticle applications and human health. Clin. Chim. Acta 411, 1841 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. H. Zhang, W. Li, Y. Gao, H. Zhang, J. Jiu, and K. Suganuma, Enhancing low-temperature and pressureless sintering of micron silver paste based on an ether-type solvent. J. Electron. Mater. 46, 5201 (2017).

    Article  ADS  CAS  Google Scholar 

  21. H. Zhang, W. Wang, H. Bai, G. Zou, L. Liu, P. Peng, and W. Guo, Microstructural and mechanical evolution of silver sintering die attach for SiC power devices during high temperature applications. J. Alloys Compd. 774, 487 (2019).

    Article  CAS  Google Scholar 

  22. W.S. Hong, M.S. Kim, C. Oh, Y. Joo, Y. Kim, and K.-K. Hong, Pressureless silver sintering of silicon-carbide power modules for electric vehicles. JOM J. Miner. Metals Mater. Soc. 72, 889 (2020).

    Article  CAS  Google Scholar 

  23. C. Chen, Z. Zhang, D. Kim, T. Sasamura, Y. Oda, M.-C. Hsieh, A. Iwaki, A. Suetake, and K. Suganuma, Interface reaction and evolution of micron-sized Ag particles paste joining on electroless Ni-/Pd-/Au-finished DBA and DBC substrates during extreme thermal shock test. J. Alloys Compd. 862, 158596 (2021).

    Article  CAS  Google Scholar 

  24. G. Yang, F. Wu, L. Zhou, X. Luan, X. Zou, H. Liu, Y. Wan, X. Zhang, and B. Wang, Influence of IMC morphology on fatigue stress, strain and life of solder layer between SiC chip and DBC substrate in IGBT under thermal cycling. 22nd International Conference on Electronic Packaging Technology (ICEPT), 1 (2021).

  25. W. Feng and X. Li, Stress and warping analysis of large area substrate connection in IGBT module package. Chin. Q. Mech. 41, 59 (2020).

    CAS  Google Scholar 

  26. C. Qian, T. Gu, P. Wang, W. Cai, X. Fan, G. Zhang, and J. Fan, Tensile characterization and constitutive modeling of sintered nano-silver particles over a range of strain rates and temperatures. Microelectron. Reliab. 132, 114536 (2022).

    Article  CAS  Google Scholar 

  27. G. Chen, Z.-S. Zhang, Y.-H. Mei, X. Li, D.-J. Yu, L. Wang, and X. Chen, Applying viscoplastic constitutive models to predict ratcheting behavior of sintered nanosilver lap-shear joint. Mech. Mater. 72, 61 (2014).

    Article  Google Scholar 

  28. L. Wang and Z. Liu, Conductive silver paste containing micro nickel powder, C.N.I.P. Administration, Editor. 2015, Anhui Fengyang Decheng Technology Co., Ltd.

  29. W. Schmitt, L.M. Chew, and D. Schnee, Silver sinter paste for SiC bonding with improved mechanical properties. 21st European Microelectronics and Packaging Conference (EMPC) & Exhibition, 1 (2017).

  30. R. Khazaka, L. Mendizabal, and D. Henry, Review on joint shear strength of nano-silver pasteand its long-term high temperature reliability. J. Electron. Mater. 43, 2459 (2014).

    Article  ADS  CAS  Google Scholar 

  31. T. Wang, X. Chen, G.-Q. Lu, and G.-Y. Lei, Low-temperature sintering with nano-silver paste in die-attached interconnection. J. Electron. Mater. 36, 1333 (2007).

    Article  ADS  CAS  Google Scholar 

  32. Y. Liu, H. Zhang, L. Wang, X. Fan, G. Zhang, and F. Sun, Effect of sintering pressure on the porosity and the shear strength of the pressure-assisted silver sintering bonding. IEEE Trans. Device Mater. Reliab. 18, 240 (2018).

    Article  CAS  Google Scholar 

  33. X. Liu, S. Li, J. Fan, J. Jiang, Y. Liu, H. Ye, and G. Zhang, Microstructural evolution, fracture behavior and bonding mechanisms study of copper sintering on bare DBC substrate for SiC power electronics packaging. J. Mater. Res. Technol. 19, 1407 (2022).

    Article  CAS  Google Scholar 

  34. L.M. Chew, W. Schmitt, C. Schwarzer, and J. Nachreiner, Micro-Silver Sinter Paste Developed for Pressure Sintering on Bare Cu Surfaces under Air or Inert Atmosphere. IEEE 68th Electronic Components and Technology Conference (ECTC), 323 (2018).

  35. H. Zhang, C. Chen, J. Jiu, S. Nagao, and K. Suganuma, High-temperature reliability of low-temperature and pressureless micron Ag sintered joints for die attachment in high-power device. J. Mater. Sci.: Mater. Electron. 29, 8854 (2018).

  36. J.L. González-Velázquez, Mechanical Behavior and Fracture of Engineering Materials (Cham: Springer, 2020).

    Book  Google Scholar 

  37. W.A. Siswanto, M. Arun, I.V. Krasnopevtseva, A. Surendar, and A. Maseleno, A competition between stress triaxiality and joule heating on microstructure evolution and degradation of SnAgCu solder joints. J. Manuf. Process. 54, 221 (2020).

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the National Natural Science Foundation of China (NSFC No. 62074062) for the financial support. Special thanks to the HPC Platform of Huazhong University of Science and Technology for the computation of the FEM model.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fengshun Wu or Longzao Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, G., Lee, E.L., Yang, K. et al. Pressure Sintering of Micro-Silver Joints in SiC Power Devices: Optimization of Processing Parameters and FEM Analysis. J. Electron. Mater. 53, 1313–1332 (2024). https://doi.org/10.1007/s11664-023-10822-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10822-y

Keywords

Navigation