Skip to main content
Log in

Insight into the Influence of SnS2/Ni/Carbon Nanoparticles on the Functional Properties of PMMA Polymer

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Poly(methyl methacrylate) (PMMA) polymers, both undoped and doped with nickel-doped tin sulfide (Sn0.8Ni0.2S2) and with various weight percentages of carbon nanoparticles (CNPs), were prepared using casting techniques. The structure, elemental analysis, morphology, and optical features of the obtained polymers were investigated using x-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive x-ray spectroscopy, fluorescence (FL), and diffuse reflectance spectroscopy. Investigations were conducted to determine how SnS2/Ni and/or carbon nanoparticle content affects the optical properties of PMMA, including its energy band gap, refractive index, dielectric constant, linear first-order susceptibility, nonlinear third-order susceptibility, and nonlinear refractive index. The direct and indirect optical band gaps for PMMA decreased from (4.99, 4.4) eV to (4.09, 2.28) eV upon doping with SnS2/Ni and 0.25 wt.% CNPs. The effect of SnS2/Ni and/or CNPs on the frequency dependence of the dielectric properties was investigated. The FL intensity can be controlled to a desired limit by adjusting the SnS2/Ni and CNP concentrations in PMMA blends for different applications in optical devices. The emitted colors from each sample were found using the CIE 1931 chromaticity diagram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. A.M. El-naggar, Z.K. Heiba, A.M. Kamal, and M.B. Mohamed, Assessment of performance based on structure, dielectric and linear/nonlinear optical properties of PVA/CMC/PVP blends loaded with ZnS/Co. Opt. Quantum Electron. 55(6), 513 (2023).

    Article  CAS  Google Scholar 

  2. A.M. El-naggar, A. Alsaggaf, Z.K. Heiba, A.M. Kamal, A.M. Aldhafiri, A. Fatehmulla, and M.B. Mohamed, Exploring the structural, optical and electrical characteristics of PVA/PANi blends. Opt. Mater. 139, 113771 (2023).

    Article  CAS  Google Scholar 

  3. Z.K. Heiba, A.M. El-naggar, A.M. Kamal, O.H. Abd-Elkader, and M.B. Mohamed, Optical and dielectric properties of PVC/TiO2/TBAI ionic liquid polymer electrolyte. Opt. Mater. 139, 113764 (2023).

    Article  CAS  Google Scholar 

  4. A.M. El-Naggar, Z.K. Heiba, A.M. Kamal, O.H. Abd-Elkader, and M.B. Mohamed, Impact of ZnS/Mn on the structure optical, and electric properties of PVC polymer. Polymers 15(9), 2091 (2023).

    Article  CAS  Google Scholar 

  5. A.R. Hilmi, S.P. Sholicha, Y.P. Sari, M. Zainuri, and S. Pratapa, Optical and physical properties of infrared-exposed-PMMA/zircon composites. Chem. Phys. Lett. 823, 140514 (2023).

    Article  CAS  Google Scholar 

  6. G. Soni, N. Gouttam, and V. Joshi, Synthesis and comparisons of optical and gamma radiation shielding properties for ZnO and SiO2 nanoparticles in PMMA nanocomposites thin films. Optik 259, 168884 (2022).

    Article  CAS  Google Scholar 

  7. S.R. Maidur and P.S. Pati, Linear optical and third-order nonlinear optical properties of anthracene chalcone derivatives doped PMMA thin films. Optik 190, 54 (2019).

    Article  CAS  Google Scholar 

  8. M.I. Mohammed, Optical properties of ZnO nanoparticles dispersed in PMMA/PVDF blend. J. Mol. Struct. 1169, 9 (2018).

    Article  CAS  Google Scholar 

  9. A.M. El Sayed, Aspects of structural, optical properties, and relaxation in (BiFeO3 or NaTiO3)–PMMA: hybrid films for dielectric applications. J. Phys. Chem. Solids. 148, 109767 (2021).

    Article  Google Scholar 

  10. T.H. AlAbdulaal and I.S. Yahia, Optical linearity and nonlinearity, structural morphology of TiO2-doped PMMA/FTO polymeric nanocomposite films: laser power attenuation. Optik 227, 166036 (2021).

    Article  CAS  Google Scholar 

  11. T.H. AlAbdulaal and I.S. Yahia, Analysis of optical linearity and nonlinearity of Fe3+- doped PMMA/FTO polymeric films: new trend for optoelectronic polymeric devices. Physica B 601, 412628 (2021).

    Article  CAS  Google Scholar 

  12. M.S. Al-Kotb, A.A.M. Farag, and I.S. Yahia, Tailoring the optical characteristics and band-gap of BG doped PMMA/FTO nanocomposite films for laser power attenuation: new approach. Physica B 641, 414081 (2022).

    Article  CAS  Google Scholar 

  13. D. Nayak and R.B. Choudhary, Augmented optical and electrical properties of PMMA-ZnS nanocomposites as emissive layer for OLED applications. Opt. Mater. 91, 470 (2019).

    Article  CAS  Google Scholar 

  14. B. Shu, Y. Chang, S. Yang, L. Dong, J. Zhang, X. Cheng, and D. Yu, Fabrication and optical properties of high-quality blue-emitting CsPbBr3 QDs-PMMA films. Opt. Mater. 115, 111069 (2021).

    Article  CAS  Google Scholar 

  15. G.A. Ermolaev, D.I. Yakubovsky, M.A. El-Sayed, M.K. Tatmyshevskiy, A.B. Mazitov, A.A. Popkova, I.M. Antropov, V.O. Bessonov, A.S. Slavich, G.I. Tselikov, I.A. Kruglov, S.M. Novikov, A.A. Vyshnevyy, A.A. Fedyanin, A.V. Arsenin, and V.S. Volkov, Broadband optical constants and nonlinear properties of SnS2 and SnSe2. Nanomaterials 12(1), 141 (2022).

    Article  CAS  Google Scholar 

  16. A. Joseph, C.R. Anjitha, A. Aravind, and P.M. Aneesh, Structural, optical and magnetic properties of SnS2 nanoparticles and photo response characteristics of p-Si/n-SnS2 heterojunction diode. Appl. Surf. Sci. 528, 146977 (2020).

    Article  CAS  Google Scholar 

  17. Z.K. Heiba, M.B. Mohamed, and M.H. Abdel Kader, Experimental and theoretical investigations on intermediate band in doped nano-SnS2. J. Electron. Mater. 47, 2945 (2018).

    Article  CAS  Google Scholar 

  18. A. Zhang, R. He, H. Li, Y. Chen, T. Kong, K. Li, H. Ju, J. Zhu, W. Zhu, and J. Zeng, Nickel doping in atomically thin tin disulfide nanosheets enables highly efficient CO2 reduction. Angew. Chem. Int. Ed. Engl. 57(34), 10954 (2018).

    Article  CAS  Google Scholar 

  19. H. Chu, F. Zhang, L. Pei, Z. Cui, J. Shen, and M. Ye, Ni, Co and Mn doped SnS2-graphene aerogels for supercapacitors. J. Alloys Compd. 767, 583 (2018).

    Article  CAS  Google Scholar 

  20. M.B. Mohamed and M.H. Abdel-Kader, SnS2/Polycarbonate Nanocomposites: structural and optical characterizations. J Inorg Organomet Polym 30, 2289–2298 (2020).

    Article  CAS  Google Scholar 

  21. R. Mohapatraa, J.B. Kaundala, and Y.C. Goswami, Synthesis of optically important transparent SnS2/PS composites films through chemical route and their photocatalytic applications. J. Ovonic Res. 18(3), 343 (2022).

    Article  Google Scholar 

  22. A. Arvinte, A.M. Sesay, and V. Virtanen, Designing carbon reinforced PMMA composites for integrated electrodes as electrochemical detectors in PMMA microchips. J. Electroanal. Chem. 876, 114486 (2020).

    Article  CAS  Google Scholar 

  23. S.B. Aziz, O.G. Abdullah, M.A. Brza, A.K. Azawy, and D.A. Tahir, Effect of carbon nano-dots (CNDs) on structural and optical properties of PMMA polymer composite. Results Phys. 15, 102776 (2019).

    Article  Google Scholar 

  24. A.G. El-Shamy, and H.S.S. Zayied, New polyvinyl alcohol/carbon quantum dots (PVA/CQDs) nanocomposite films: structural, optical and catalysis properties. Synth. Met. 259, 116218 (2020).

    Article  CAS  Google Scholar 

  25. V. Sanjay, K.M. Rajashekara, J. Johns, and V. Pattar, the dielectric and impedance spectroscopy of poly vinyl alcohol doped with carbon (PVA-C). Physica B 650, 414561 (2023).

    Article  CAS  Google Scholar 

  26. A.M. El-Naggar, Z.K. Heiba, A.M. Kamal, O.H. Abd-Elkader, and M.B. Mohamed, Structural, optical, and dielectric performance of PVA/PVP/PEG blend loaded with nano CoFe2−xErxO4 ferrite. J. Mater. Sci. Mater. Electron. 34(6), 566 (2023).

    Article  CAS  Google Scholar 

  27. R. Kumar, S.A. Ali, P. Singh, U. De, H.S. Virk, and R. Prasad, Physical and chemical response of 145 MeV Ne6+ ion irradiated polymethylmethacrylate (PMMA) polymer. Instrum. Methods B 269, 1755 (2011).

    Article  CAS  Google Scholar 

  28. S.K. Abdel-Aal, and A.S. Abdel-Rahman, Fascinating physical properties of 2D Hybrid Perovskite [(NH3)(CH2)7(NH3)]CuClxBr4–x, x = 0, 2 and 4. J. Electron. Mater. 48, 1686 (2019).

    Article  CAS  Google Scholar 

  29. V. Svorcík, O. Lyutakov, and I. Huttel, Thickness dependence of refractive index and optical gap of PMMA layers prepared under electrical field. J. Mater. Sci. Mater. Electron. 19(4), 363 (2008).

    Article  Google Scholar 

  30. A. Badawi, Engineering the optical properties of PVA/PVP polymeric blend in situ using tin sulfide for optoelectronics. Appl. Phys. A Mater. Sci. Process. 126(5), 1 (2020).

    Article  Google Scholar 

  31. N. Yaqub, W.A. Farooq, and M.S. AlSalhi, Delving into the properties of polymer nanocomposites with distinctive nano-particle quantities, for the enhancement of optoelectronic devices. Heliyon. 6(11), e05597 (2020).

    Article  CAS  Google Scholar 

  32. R. Boughalmi, A. Boukhachem, I. Gaied, K. Boubaker, M. Bouhafs, and M. Amlouk, Effect of tin content on the electrical and optical properties of sprayed silver sulfide semiconductor thin films. Mater. Sci. Semicond. Process. 16(6), 1584 (2013).

    Article  CAS  Google Scholar 

  33. O.G. Abdullah, S.B. Aziz, K.M. Omer, and Y.M. Salih, Reducing the optical band gap of polyvinyl alcohol (PVA) based nanocomposite. J. Mater. Sci. Mater. Electron. 26, 5303 (2015).

    Article  CAS  Google Scholar 

  34. A.M. El-naggar, Z.K. Heiba, M.B. Mohamed, A.M. Kamal, O.H. Abd-Elkader, and G. Lakshminarayana, Effect of ZnO/(Co or Mn) ratios on the structure and optical spectroscopy parameters of PVA/PVP/PEG blended polymer. Opt. Mater 128, 112411 (2022).

    Article  CAS  Google Scholar 

  35. K. Tanaka, Optical properties and photoinduced changes in amorphous As-S films. Thin Solid Films 66, 271 (1980).

    Article  CAS  Google Scholar 

  36. A. Bouzidi, K. Omri, W. Jilani, H. Guermazi, and I.S. Yahia, Influence of TiO2 incorporation on the microstructure, optical, and dielectric properties of TiO2/Epoxy composites. J. Inorg. Organomet. Polym. Mater. 28(3), 1114 (2018).

    Article  CAS  Google Scholar 

  37. O.G. Abdullah, S.B. Aziz, and M.A. Rasheed, Structural and optical characterization of PVA:KMnO4 based solid polymer electrolyte. Results Phys. 6, 1103 (2016).

    Article  Google Scholar 

  38. Z.K. Heiba and M.B. Mohamed, Effect of annealed and Mg-doped nano ZnO on physical properties of PVA. J. Mol. Struct. 1181, 507 (2019).

    Article  CAS  Google Scholar 

  39. S. Kaliramna, S.S. Dhayal, and N. Kumar, Fabrication of PMMA thin film and its optical and photocatalytic activity. Mater. Today: Proc. 69, 42 (2022).

    Article  CAS  Google Scholar 

  40. H. Kara, G. Oylumluoglu, and M.B. Coban, Photoluminescence properties of a new Sm(III) Complex/PMMA Electrospun composite fibers. J. Clust Sci. 31, 701 (2020).

    Article  CAS  Google Scholar 

  41. F.Y. Ran, Z. Xiao, Y. Toda, H. Hosono, and T. Kamiya, n-type conversion of SnS by isovalent ion substitution: geometrical doping as a new doping route. Sci. Rep 5, 10428 (2015).

    Article  Google Scholar 

  42. L. Li, Tunable memristic characteristics based on graphene oxide charge-trap memory. Micromachines 10, 15 (2019).

    Google Scholar 

  43. K. Rajesh, V. Crasta, N.B. Rithin Kumar, G. Shetty, and P.D. Rekha, Structural, optical, mechanical and dielectric properties of titanium dioxide doped PVA/PVP nanocomposite. J. Polym. Res. 26, 99 (2019).

    Article  Google Scholar 

  44. S. Mahendia, A.K. Tomar, and S. Kumar, Electrical conductivity and dielectric spectroscopic studies of PVA-Ag nanocomposite films. J. Alloys Compd. 508, 406 (2010).

    Article  CAS  Google Scholar 

  45. C.S. Ramya, S. Selvasekarapandian, G. Hirankumar, T. Savitha, and P.C. Angelo, Investigation on dielectric relaxations of PVP-NH4SCN polymer electrolyte. J. Non-Cryst. Solids 354, 1494 (2008).

    Article  CAS  Google Scholar 

  46. M. Ren, F.H. Frimmel, and G. Abbt-Braun, Multi-cycle photocatalytic degradation of bezafibrate by a cast polyvinyl alcohol/titanium dioxide (PVA/TiO2) hybrid film. J. Mol. Catal. A 400, 42 (2015).

    Article  CAS  Google Scholar 

  47. M. Lakshmi, A.S. Roy, S. Khasim, M. Faisal, K.C. Sajjan, and M. Revanasiddappa, Dielectric property of NiTiO3 doped substituted ortho-chloropolyaniline composites. AIP Adv. 3, 1–14 (2013).

    Article  Google Scholar 

  48. X. Chen, J.K. Tseng, I. Treufeld, M. Mackey, D.E. Schuele, R. Li, and L. Zhu, J. Mater. Chem. C 5(39), 10417 (2017).

    Article  CAS  Google Scholar 

  49. A.N. Al-hakimi, G.M. Asnag, F. Alminderej, I.A. Alhagri, S.M. Al-Hazmy, and E.M. Abdallah, Enhanced structural, optical, electrical properties and antibacterial activity of selenium nanoparticles loaded PVA/CMC blend for electrochemical batteries and food packaging applications. Polym. Test. 116, 107794 (2022).

    Article  CAS  Google Scholar 

  50. C. Rayssi, S. El Kossi, J. Dhahri, and K. Khirouni, Frequency and temperature-dependence of dielectric permittivity and electric modulus studies of the solid solution Ca0.85Er0.1Ti1-XCo4x/3O3 (0 ≤ x ≤ 0.1). RSC Adv. 8, 17139 (2018).

    Article  CAS  Google Scholar 

  51. M. Hema, S. Selvasekerapandian, A. Sakunthala, D. Arunkumar, and H. Nithya, Structural, vibrational and electrical characterization of PVA-NH4Br polymer electrolyte system. Phys. B Condens. Matter 403, 2740 (2008).

    Article  CAS  Google Scholar 

  52. S.B. Aziz, Study of electrical percolation phenomenon from the dielectric and electric modulus analysis. Bull. Mater. Sci. 38, 1597 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors extend their appreciation to the Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia for funding this research (IFKSURC-1-1017).

Funding

This work is supported by Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed, discussed the results, and approved the final manuscript.

Corresponding authors

Correspondence to Zein K. Heiba or Mohamed Bakr Mohamed.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 839 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-naggar, A.M., Heiba, Z.K., Kamal, A.M. et al. Insight into the Influence of SnS2/Ni/Carbon Nanoparticles on the Functional Properties of PMMA Polymer. J. Electron. Mater. 52, 7143–7156 (2023). https://doi.org/10.1007/s11664-023-10632-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10632-2

Keywords

Navigation