Skip to main content
Log in

A Review on Advances in the Gas-Sensitive Properties of Perovskite Materials

  • Review Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In the realm of gas sensors, research has been rather comprehensive on the gas-sensitive features of ordinary binary metal oxide materials. At present, ternary metal oxide materials are gradually becoming a hot spot in the research of gas sensors. Perovskite materials with a stoichiometric ratio of ABY3 are mainly ternary metal oxide or halide materials. They have a diverse composition of elements, easily tunable structure and chemistry, the ability to host a high number of cations and oxygen vacancies, and thus excellent carrier transport and redox properties, which offer great potential for gas sensors. This paper outlines the current advances concerning the application of ABY3 perovskites as gas sensors, specifying experimental tactics and approaches for improving gas sensing. It is expected that the described perovskite materials will result in measuring gases at low temperatures with improved selectivity, minimum detection limits and other sensing properties of the sensors.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. Tasaki, S. Takase, and Y. Shimizu, Impedancemetric acetylene gas sensing properties of Sm-Fe-based perovskite-type oxide-based thick-film device. Sens. Actuators B Chem. 187, 128 (2013).

    Article  CAS  Google Scholar 

  2. A. Nur’aini and I. Oh, Volatile organic compound gas sensors based on methylammonium lead iodide perovskite operating at room temperature. RSC Adv. 10, 12982 (2020).

    Article  Google Scholar 

  3. C. Balamurugan and D.-W. Lee, Perovskite hexagonal YMnO3 nanopowder as p-type semiconductor gas sensor for H2S detection. Sens. Actuators B Chem. 221, 857 (2015).

    Article  CAS  Google Scholar 

  4. F. Li, C. Shi, and J. Hu, Theoretical explanation of CO2 sensing characteristics and adsorption properties on SmCoO3 (001) surface. Comput. Mater. Sci. 133, 108 (2017).

    Article  CAS  Google Scholar 

  5. F. Bertocci, A. Fort, V. Vignoli, M. Mugnaini, and R. Berni, Optimization of perovskite gas sensor performance: characterization, measurement and experimental design. Sensors 17, 1352 (2017).

    Article  Google Scholar 

  6. A. Maity, A.K. Raychaudhuri, and B. Ghosh, High sensitivity NH3 gas sensor with electrical readout made on paper with perovskite halide as sensor material. Sci. Rep. 9, 7777 (2019).

    Article  Google Scholar 

  7. A. Bala, S.B. Majumder, M. Dewan, and A. Roy-Chaudhuri, Hydrogen sensing characteristics of perovskite based calcium doped BiFeO3 thin films. Int. J. Hydrog. Energy 44, 18648 (2019).

    Article  CAS  Google Scholar 

  8. J. Bruce, K. Bosnick, and E. Kamali Heidari, Pd-decorated ZnO nanoflowers as a promising gas sensor for the detection of meat spoilage. Sens. Actuators B: Chem. 355, 131316 (2022).

    Article  CAS  Google Scholar 

  9. Q. Lei, H. Li, H. Zhang, J. Wang, W. Fan, and L. Cai, Three-dimensional hierarchical CuO gas sensor modified by Au nanoparticles. J. Semicond. 40, 022101 (2019).

    Article  CAS  Google Scholar 

  10. X. Wang, S. Li, L. Xie, X. Li, D. Lin, and Z. Zhu, Low-temperature and highly sensitivity H2S gas sensor based on ZnO/CuO composite derived from bimetal metal-organic frameworks. Ceram. Int. 46, 15858 (2020).

    Article  CAS  Google Scholar 

  11. I. Bibi, Z. Nazeer, F. Majid, S. Ata, O. Hakami, I. Talib, M. Iqbal, M. Fatima, N. Alfryyan, and N. Alwadai, Structural, electrochemical and photocatalytic properties of zinc doped Co1xZn1.5xFeO3 perovskites prepared by auto combustion sol–gel approach. Results Phys. 26, 104392 (2021).

    Article  Google Scholar 

  12. Y. Cai, S. Luo, R. Chen, J. Yu, and L. Xiang, Ba-modified ZnO nanorods loaded with palladium for highly sensitive and rapid detection of methane at low temperatures. Chemosensors 10, 346 (2022).

    Article  CAS  Google Scholar 

  13. M. Proença, M.S. Rodrigues, D.I. Meira, M.C.R. Castro, P.V. Rodrigues, A.V. Machado, E. Alves, N.P. Barradas, J. Borges, and F. Vaz, Optimization of Au:CuO thin films by plasma surface modification for high-resolution LSPR gas sensing at room temperature. Sensors 22, 7043 (2022).

    Article  Google Scholar 

  14. Z. Yuan, Y. Lei, X. Li, F. Meng, and H. Gao, WO3 nanosheets/FeCo2O4 nanoparticles heterostructures for highly sensitive and selective ammonia sensors. IEEE Sens. J. 21, 26515 (2021).

    Article  CAS  Google Scholar 

  15. A. Maity, S. Mitra, C. Das, S. Siraj, A.K. Raychaudhuri, and B. Ghosh, Universal sensing of ammonia gas by family of lead halide perovskites based on paper sensors: experiment and molecular dynamics. Mater. Res. Bull. 136, 111142 (2021).

    Article  CAS  Google Scholar 

  16. P.T. Hung, P.D. Hoat, T.-A. Nguyen, P. Van Thin, V.X. Hien, H.-J. Lim, S. Lee, J.-H. Lee, and Y.-W. Heo, Growth and NO2 sensing properties of Cs2SnI6 thin film. Mater. Res. Bull. 147, 111628 (2022).

    Article  CAS  Google Scholar 

  17. M.-Y. Zhu, L.-X. Zhang, J. Yin, J.-J. Chen, L.-J. Bie, and B.D. Fahlman, Physisorption induced p-xylene gas-sensing performance of (C4H9NH3)2PbI4 layered perovskite. Sens. Actuators B: Chem. 282, 659 (2019).

    Article  CAS  Google Scholar 

  18. P.F. Cao, S.Y. Ma, X.L. Xu, B.J. Wang, O. Almamoun, T. Han, X.H. Xu, S.T. Pei, R. Zhang, J.L. Zhang, and W.W. Liu, Preparation and characterization of a novel ethanol gas sensor based on FeYO3 microspheres by using orange peels as bio-templates. Vacuum 177, 109359 (2020).

    Article  CAS  Google Scholar 

  19. J. John, V.P.M. Pillai, A.R. Thomas, R. Philip, J. Joseph, S. Muthunatesan, V. Ragavendran, and R. Prabhu, Synthesis, structural and morphological property of BaSnO3 nanopowder prepared by solid state ceramic method. IOP Conf Ser Mater Sci Eng 195, 012007 (2017).

    Article  Google Scholar 

  20. M.N. Abdillah, D. Triyono, A.W. Anugrah, and R.A. Rafsanjani, Structural and vibrational analysis of LaFe1−xMnxO3(x = 0.05, 0.10, 0.15 and 0.20) perovskite materials. IOP Conf. Ser. Mater. Sci. Eng. 902, 012036 (2020).

    Article  CAS  Google Scholar 

  21. P.F. Cao, S.Y. Ma, and X.L. Xu, Novel ultra-sensitive dandelion-like Bi2WO6 nanostructures for ethylene glycol sensing application. Vacuum 181, 109748 (2020).

    Article  CAS  Google Scholar 

  22. G. Li, C. She, Y. Zhang, H. Li, S. Liu, F. Yue, C. Jing, Y. Cheng, and J. Chu, A “Turn-on” fluorescence perovskite sensor based on MAPbBr3/mesoporous TiO2 for NH3 and amine vapor detections. Sens. Actuators B: Chem. 327, 128918 (2021).

    Article  CAS  Google Scholar 

  23. K. Shingange, H.C. Swart, and G.H. Mhlongo, LaBO3 (B = Fe, Co) nanofibers and their structural, luminescence and gas sensing characteristics. Physica B 578, 411883 (2020).

    Article  CAS  Google Scholar 

  24. H. Xiao, C. Xue, P. Song, J. Li, and Q. Wang, Preparation of porous LaFeO3 microspheres and their gas-sensing property. Appl. Surf. Sci. 337, 65 (2015).

    Article  CAS  Google Scholar 

  25. D.J. Dmonte, A. Bhardwaj, M. Wilhelm, T. Fischer, I. Kuřitka, and S. Mathur, Sub PPM detection of NO2 using strontium doped bismuth ferrite nanostructures. Micromachines 14, 644 (2023).

    Article  Google Scholar 

  26. Y. Yin, F. Li, N. Zhang, S. Ruan, H. Zhang, and Y. Chen, Improved gas sensing properties of silver-functionalized ZnSnO3 hollow nanocubes. Inorg. Chem. Front. 5, 2123 (2018).

    Article  CAS  Google Scholar 

  27. X. Sun, J. Yang, Z. Wu, G. Meng, X. Guo, D. Kuang, L. Xiong, W. Qu, X. Fang, X. Yang, X. Tang, and Y. He, Lead-free CsCu2I3 perovskite nanostructured networks gas sensor for selective detection of trace nitrogen dioxide at room temperature. IEEE Sens. J. 21, 14677 (2021).

    Article  CAS  Google Scholar 

  28. Y. Chen, X. Zhang, Z. Liu, Z. Zeng, H. Zhao, X. Wang, and J. Xu, Light enhanced room temperature resistive NO2 sensor based on a gold-loaded organic–inorganic hybrid perovskite incorporating tin dioxide. Microchim. Acta 186, 47 (2019).

    Article  Google Scholar 

  29. D. Zhang, Y. Zhang, Y. Fan, N. Luo, Z. Cheng, and J. Xu, Micro-spherical ZnSnO3 material prepared by microwave-assisted method and its ethanol sensing properties. Chin. Chem. Lett. 31, 2087 (2020).

    Article  CAS  Google Scholar 

  30. X. Wang, M. Xia, H. Li, X. Zhu, B. Leng, T. Tao, W. Xu, and J. Xu, Preparation of transparent amorphous ZnSnO3 cubic nanoparticles and light-induced homostructures: application in UV sensor and room-temperature gas sensor. Appl. Surf. Sci. 493, 862 (2019).

    Article  CAS  Google Scholar 

  31. I. Jaouali, H. Hamrouni, N. Moussa, M.F. Nsib, M.A. Centeno, A. Bonavita, G. Neri, and S.G. Leonardi, LaFeO3 ceramics as selective oxygen sensors at mild temperature. Ceram. Int. 44, 4183 (2018).

    Article  CAS  Google Scholar 

  32. A.I. Ayesh, S.A. Alghamdi, B. Salah, S.H. Bennett, C. Crean, and P.J. Sellin, High sensitivity H2S gas sensors using lead halide perovskite nanoparticles. Results Phys. 35, 105333 (2022).

    Article  Google Scholar 

  33. P.D. Hoat, Y. Yun, B. Park, P.T. Hung, V.X. Hien, J.-H. Lee, S. Lee, and Y.-W. Heo, Synthesis of Cs2TeI6 thin film and its NO2 gas-sensing properties under blue-light illumination. Scripta Mater. 207, 114305 (2022).

    Article  CAS  Google Scholar 

  34. T. Addabbo, F. Bertocci, A. Fort, M. Gregorkiewitz, M. Mugnaini, R. Spinicci, and V. Vignoli, Gas sensing properties and modeling of YCoO3 based perovskite materials. Sens. Actuators B: Chem. 221, 1137 (2015).

    Article  CAS  Google Scholar 

  35. G. Zhang, X.-Z. Song, X.-F. Wang, N. Liu, X. Li, Z. Wei, G. Qian, Z. Wang, S. Yu, and Z. Tan, LnFeO3 (Ln = La, Nd, Sm) derived from bimetallic organic frameworks for gas sensor. J. Alloys Compd. 902, 163803 (2022).

    Article  CAS  Google Scholar 

  36. Y.H. Ochoa-Muñoz, R. Mejía de Gutiérrez, J.E. Rodríguez-Páez, I. Gràcia, and S. Vallejos, Gas sensors based on porous ceramic bodies of MSnO3 perovskites (M = Ba, Ca, Zn): formation and sensing properties towards ethanol, acetone, and toluene vapours. Molecules 27, 2889 (2022).

    Article  Google Scholar 

  37. H. Chai, Y. Li, Y. Luo, M. Debliquy, and C. Zhang, Investigation on isopropanol sensing properties of LnFeO3(Ln = Nd, Dy, Er) perovskite materials synthesized by microwave-assisted hydrothermal method. Appl. Surf. Sci. 601, 154292 (2022).

    Article  CAS  Google Scholar 

  38. Y. Zhang, C. Ma, X. Yang, Y. Song, X. Liang, X. Zhao, Y. Wang, Y. Gao, F. Liu, F. Liu, P. Sun, and G. Lu, NASICON-based gas sensor utilizing MMnO3 (M: Gd, Sm, La) sensing electrode for triethylamine detection. Sens. Actuators B: Chem. 295, 56 (2019).

    Article  CAS  Google Scholar 

  39. C. Ma, L. Wang, Y. Zhang, X. Yang, X. Liang, X. Hao, T. Liu, F. Liu, X. Yan, Y. Gao, P. Sun, and G. Lu, Mixed-potential type triethylamine sensor based on NASICON utilizing SmMO3 (M = Al, Cr, Co) sensing electrodes. Sens. Actuators B: Chem. 284, 110 (2019).

    Article  CAS  Google Scholar 

  40. A.D. Sheikh, V. Vhanalakar, A. Katware, K. Pawar, and P.S. Patil, Two-step antisolvent precipitated MAPbI3-pellet-based robust room-temperature ammonia sensor. Adv. Mater. Technol. 4, 1900251 (2019).

    Article  CAS  Google Scholar 

  41. R. Zhu, Y. Zhang, H. Zhong, X. Wang, H. Xiao, Y. Chen, and X. Li, High-performance room-temperature NO2 sensors based on CH3NH3PbBr3 semiconducting films: effect of surface capping by alkyl chain on sensor performance. J. Phys. Chem. Solids 129, 270 (2019).

    Article  CAS  Google Scholar 

  42. A.A. Parfenov, O.R. Yamilova, L.G. Gutsev, D.K. Sagdullina, A.V. Novikov, B.R. Ramachandran, K.J. Stevenson, S.M. Aldoshin, and P.A. Troshin, Highly sensitive and selective ammonia gas sensor based on FAPbCl3 lead halide perovskites. J. Mater. Chem. C 9, 2561 (2021).

    Article  CAS  Google Scholar 

  43. A. Bhardwaj, H. Bae, L. Mathur, S. Mathur, and S.-J. Song, Efficient nitric oxide sensing on nanostructured La2MMnO6 (M: Co, Cu, Zn) electrodes. Ceram. Int. 49, 9607 (2023).

    Article  CAS  Google Scholar 

  44. C. Pi, X. Yu, W. Chen, L. Yang, C. Wang, Z. Liu, Y. Wang, J. Qiu, B. Liu, and X. Xu, A reversible and fast-responsive humidity sensor based on a lead-free Cs2TeCl6 double perovskite. Mater. Adv. 2, 1043 (2021).

    Article  CAS  Google Scholar 

  45. A. Jamil, S. Fareed, F. Afsar, F. Siddique, F. Sher, and M.A. Rafiq, Development of high performance Bi5Ti3FeO15 layered perovskite oxygen gas sensor and its dielectric behavior. Mater. Res. Express 6, 115028 (2019).

    Article  CAS  Google Scholar 

  46. G. Li, Y. Zhang, X. Zhao, J. Lin, C. She, S. Liu, C. Jing, Y. Cheng, and J. Chu, Bismuth-based lead-free perovskite film for highly sensitive detection of ammonia gas. Sens. Actuators B: Chem. 345, 130298 (2021).

    Article  CAS  Google Scholar 

  47. S. Smiy, M. Bejar, E. Dhahri, T. Fiorido, M. Bendahan, and K. Aguir, Ozone detection based on nanostructured La0.8Pb0.1Ca0.1Fe0.8Co0.2O3 thin films. J. Alloys Compd 829, 154596 (2020).

    Article  CAS  Google Scholar 

  48. Y. Zhang, H. Xu, S. Dong, R. Han, X. Liu, Y. Wang, S. Li, Q. Bu, X. Li, and J. Xiang, A fast response and recovery acetone gas sensor based on BiFeO3 nanomaterials with high sensitivity and low detection limit. J. Mater. Sci. Mater. Electron. 29, 2193 (2018).

    Article  CAS  Google Scholar 

  49. A. Queraltó, D. Graf, R. Frohnhoven, T. Fischer, H. Vanrompay, S. Bals, A. Bartasyte, and S. Mathur, LaFeO3 nanofibers for high detection of sulfur-containing gases. ACS Sustain. Chem. Eng. 7, 6023 (2019).

    Article  Google Scholar 

  50. R. Guo, H. Wang, R. Tian, D. Shi, H. Li, Y. Li, and H. Liu, The enhanced ethanol sensing properties of CNT@ZnSnO3 hollow boxes derived from Zn-MOF(ZIF-8). Ceram. Int. 46, 7065 (2020).

    Article  CAS  Google Scholar 

  51. J. Zhang, X. Jia, D. Lian, J. Yang, and H. Song, Controlled synthesis of urchin-like ZnSnO3/α-Fe2O3 hierarchical hollow microspheres with enhanced acetone gas sensing properties. J. Mater. Sci. Mater. Electron. 31, 15446 (2020).

    Article  CAS  Google Scholar 

  52. E. Cao, Z. Chu, H. Wang, W. Hao, L. Sun, and Y. Zhang, Effect of film thickness on the electrical and ethanol sensing characteristics of LaFeO3 nanoparticle-based thick film sensors. Ceram. Int. 44, 7180 (2018).

    Article  CAS  Google Scholar 

  53. M. Manikandan, B. Santhosh-Kumar, T. Mukil-Raj, S. Moorthy-Babu, and C. Venkateswaran, Gas-sensing characteristics of SrFeO3−δ thin film probed by a homemade apparatus. J. Electron. Mater. 47, 4678 (2018).

    Article  CAS  Google Scholar 

  54. Y. Chen, L. Yu, Q. Li, Y. Wu, Q. Li, and T. Wang, An evolution from 3D face-centered-cubic ZnSnO3 nanocubes to 2D orthorhombic ZnSnO3 nanosheets with excellent gas sensing performance. Nanotechnology 23, 415501 (2012).

    Article  Google Scholar 

  55. Q. Chen, S.Y. Ma, H.Y. Jiao, G.H. Zhang, H. Chen, X.L. Xu, H.M. Yang, and Z. Qiang, Synthesis of novel ZnSnO3 hollow polyhedrons with open nanoholes: enhanced acetone-sensing performance. Ceram. Int. 43, 1617 (2017).

    Article  CAS  Google Scholar 

  56. T. Zhou, T. Zhang, R. Zhang, J. Deng, Z. Lou, G. Lu, and L. Wang, Highly sensitive sensing platform based on ZnSnO3 hollow cubes for detection of ethanol. Appl. Surf. Sci. 400, 262 (2017).

    Article  CAS  Google Scholar 

  57. L. Ma, S.Y. Ma, X.F. Shen, T.T. Wang, X.H. Jiang, Q. Chen, Z. Qiang, H.M. Yang, and H. Chen, PrFeO3 hollow nanofibers as a highly efficient gas sensor for acetone detection. Sens. Actuators B: Chem. 255, 2546 (2018).

    Article  CAS  Google Scholar 

  58. G. Feng, Y. Che, C. Song, J. Xiao, X. Fan, S. Sun, G. Huang, and Y. Ma, Morphology-controlled synthesis of ZnSnO3 hollow spheres and their n-butanol gas-sensing performance. Ceram. Int. 47, 2471 (2021).

    Article  CAS  Google Scholar 

  59. J. Zheng, H. Hou, H. Fu, L. Gao, and H. Liu, Size-controlled synthesis of porous ZnSnO3 nanocubes for improving formaldehyde gas sensitivity. RSC Adv. 11, 20268 (2021).

    Article  CAS  Google Scholar 

  60. L. Jiang, Z. Chen, Q. Cui, S. Xu, and F. Tang, Experimental and DFT-D3 study of sensitivity and sensing mechanism of ZnSnO3 nanosheets to C3H6O gas. J. Mater. Sci. 57, 1 (2022).

    Article  CAS  Google Scholar 

  61. K. Liu, Z. Zheng, J. Xu, and C. Zhang, Enhanced visible light-excited ZnSnO3 for room temperature ppm-level CO2 detection. J. Alloys Compd. 907, 164440 (2022).

    Article  CAS  Google Scholar 

  62. Y. Zhang, T. Liu, T. Wang, W. Li, X. Hao, Q. Lu, H. Yu, X. Liang, F. Liu, F. Liu, C. Wang, K. Shimanoe, and G. Lu, Ce0.8Gd0.2O1.95-based mixed potential type triethylamine sensor utilizing La2NiFeO6 sensing electrode. Sens. Actuators B Chem. 345, 130438 (2021).

    Article  CAS  Google Scholar 

  63. T.T. Yang, S.Y. Ma, P.F. Cao, X.L. Xu, L. Wang, S.T. Pei, T. Han, X.H. Xu, P.D. Yun, and H. Sheng, Synthesis and characterization of ErFeO3 nanoparticles by a hydrothermal method for isopropanol sensing properties. Vacuum 185, 110005 (2021).

    Article  CAS  Google Scholar 

  64. Y. Huang, J. Zhang, X. Zhang, J. Jian, J. Zou, Q. Jin, and X. Zhang, The ammonia detection of cesium lead halide perovskite quantum dots in different halogen ratios at room temperature. Opt. Mater. 134, 113155 (2022).

    Article  CAS  Google Scholar 

  65. L. Gildo-Ortiz, V.M. Rodríguez-Betancourtt, O. Blanco-Alonso, A. Guillén-Bonilla, J.T. Guillén-Bonilla, A. Guillén-Cervantes, J. Santoyo-Salazar, and H. Guillén-Bonilla, A simple route for the preparation of nanostructured GdCoO3 via the solution method, as well as its characterization and its response to certain gases. Results Phys. 12, 475 (2019).

    Article  Google Scholar 

  66. L. Gildo-Ortiz, H. Guillén-Bonilla, V.M. Rodríguez-Betancourtt, O. Blanco-Alonso, A. Guillén-Bonilla, J. Santoyo-Salazar, I.C. Romero-Ibarra, and J. Reyes-Gómez, Key processing of porous and fibrous LaCoO3 nanostructures for successful CO and propane sensing. Ceram. Int. 44, 15402 (2018).

    Article  CAS  Google Scholar 

  67. R.P. Patil, P.V. More, G.H. Jain, P.K. Khanna, and V.B. Gaikwad, BaTiO3 nanostructures for H2S gas sensor: influence of band-gap, size and shape on sensing mechanism. Vacuum 146, 455 (2017).

    Article  CAS  Google Scholar 

  68. X. Wang, H. Qin, L. Sun, and J. Hu, CO2 sensing properties and mechanism of nanocrystalline LaFeO3 sensor. Sens. Actuators B: Chem. 188, 965 (2013).

    Article  CAS  Google Scholar 

  69. Y. Chen, D. Wang, H. Qin, H. Zhang, Z. Zhang, G. Zhou, C. Gao, and J. Hu, CO2 sensing properties and mechanism of PrFeO3 and NdFeO3 thick film sensor. J. Rare Earths 37, 80 (2019).

    Article  Google Scholar 

  70. T. Han, S.Y. Ma, X.L. Xu, X.H. Xu, S.T. Pei, Y. Tie, P.F. Cao, W.W. Liu, B.J. Wang, R. Zhang, and J.L. Zhang, Rough SmFeO3 nanofibers as an optimization ethylene glycol gas sensor prepared by electrospinning. Mater. Lett. 268, 127575 (2020).

    Article  CAS  Google Scholar 

  71. X.-F. Wang, X. Li, G. Zhang, N. Liu, H. Liang, Z.-H. Wang, Z. Tan, and X.-Z. Song, La[Fe(CN)6]·5H2O-derived LaFeO3 hexagonal nano-sheets as low-power n-propanol sensors. Appl. Phys. A 128, 829 (2022).

    Article  CAS  Google Scholar 

  72. C. Aranthady, T. Jangid, K. Gupta, A.K. Mishra, S.D. Kaushik, V. Siruguri, G.M. Rao, G.V. Shanbhag, and N.G. Sundaram, Selective SO2 detection at low concentration by Ca substituted LaFeO3 chemiresistive gas sensor: a comparative study of LaFeO3 pellet vs thin film. Sens. Actuators B Chem. 329, 129211 (2021).

    Article  CAS  Google Scholar 

  73. Y.J. Ma, J.Y. Xiao, Q.Y. Zhang, C.Y. Ma, X.N. Jiang, B.Y. Wu, and X.Y. Zeng, Single-crystal perovskite LaBaCo2O6-δ micro-sensors for gas detection in humid environment. J. Alloys Compd. 801, 360 (2019).

    Article  CAS  Google Scholar 

  74. W. Jiao, J. He, and L. Zhang, Synthesis and high ammonia gas sensitivity of (CH3NH3)PbBr3xIx perovskite thin film at room temperature. Sens. Actuators B Chem. 309, 127786 (2020).

    Article  CAS  Google Scholar 

  75. J. Wang, Y. Ren, H. Liu, Z. Li, X. Liu, Y. Deng, and X. Fang, Ultrathin 2D NbWO6 perovskite semiconductor based gas sensors with ultrahigh selectivity under low working temperature. Adv. Mater. 34, 2104958 (2022).

    Article  CAS  Google Scholar 

  76. V. Chumakova, A. Marikutsa, M. Rumyantseva, D. Fasquelle, and A. Gaskov, Nanocrystalline LaCoO3 modified by Ag nanoparticles with improved sensitivity to H2S. Sens. Actuators B: Chem. 296, 126661 (2019).

    Article  CAS  Google Scholar 

  77. Y.-K. Syue, K.-C. Hsu, T.-H. Fang, C.-I. Lee, and C.-J. Shih, Characteristics and gas sensor applications of ZnO-Perovskite heterostructure. Ceram. Int. 48, 12585 (2022).

    Article  CAS  Google Scholar 

  78. Y. Yin, Y. Shen, P. Zhou, R. Lu, A. Li, S. Zhao, W. Liu, D. Wei, and K. Wei, Fabrication, characterization and n-propanol sensing properties of perovskite-type ZnSnO3 nanospheres based gas sensor. Appl. Surf. Sci. 509, 145335 (2020).

    Article  CAS  Google Scholar 

  79. T.T. Nga Phan, T.T. My Dinh, M. Duc Nguyen, D. Li, C. Nhan Phan, T. Kien Pham, C. Tu Nguyen, and T. Huyen Pham, Hierarchically structured LaFeO3 with hollow core and porous shell as efficient sensing material for ethanol detection. Sens. Actuators B: Chem. 354, 131195 (2022).

    Article  CAS  Google Scholar 

  80. S.D. Waghmare, S.D. Raut, B.G. Ghule, V.V. Jadhav, S.F. Shaikh, A.M. Al-Enizi, M. Ubaidullah, A. Nafady, B.M. Thamer, and R.S. Mane, Pristine and palladium-doped perovskite bismuth ferrites and their nitrogen dioxide gas sensor studies. J. King Saud Univ. Sci. 32, 3125 (2020).

    Article  Google Scholar 

  81. X. Wang, H. Qin, J. Pei, Y. Chen, L. Li, J. Xie, and J. Hu, Sensing performances to low concentration acetone for palladium doped LaFeO3 sensors. J. Rare Earths 34, 704 (2016).

    Article  CAS  Google Scholar 

  82. K. Lee, S. Hajra, M. Sahu, Y.K. Mishra, and H.J. Kim, Co3+ substituted gadolinium nano-orthoferrites for environmental monitoring: synthesis, device fabrication, and detailed gas sensing performance. J. Ind. Eng. Chem. 106, 512 (2022).

    Article  CAS  Google Scholar 

  83. P. Hao, Z. Lin, P. Song, Z. Yang, and Q. Wang, Hydrothermal preparation and acetone-sensing properties of Ni-doped porous LaFeO3 microspheres. J. Mater. Sci. Mater. Electron. 31, 6679 (2020).

    Article  CAS  Google Scholar 

  84. Y. Yin, Y. Shen, S. Zhao, J. Bai, Y. Qi, C. Han, and D. Wei, Effect of noble metal elements on ethanol sensing properties of ZnSnO3 nanocubes. J. Alloys Compd. 887, 161409 (2021).

    Article  CAS  Google Scholar 

  85. K.-Y. Lee, J.-C. Hsieh, C.-A. Chen, W.-L. Chen, H.-F. Meng, C.-J. Lu, S.-F. Horng, and H.-W. Zan, Ultrasensitive detection of hydrogen sulfide gas based on perovskite vertical channel chemo-sensor. Sens. Actuators B Chem. 326, 128988 (2021).

    Article  CAS  Google Scholar 

  86. Y. Zhuang, W. Yuan, L. Qian, S. Chen, and G. Shi, High-performance gas sensors based on a thiocyanate ion-doped organometal halide perovskite. Phys. Chem. Chem. Phys. 19, 12876 (2017).

    Article  CAS  Google Scholar 

  87. C. Shi, H. Qin, M. Zhao, X. Wang, L. Li, and J. Hu, Investigation on electrical transport, CO sensing characteristics and mechanism for nanocrystalline La1−xCaxFeO3 sensors. Sens. Actuators B: Chem. 190, 25 (2014).

    Article  CAS  Google Scholar 

  88. J. Xiang, X. Chen, X. Zhang, L. Gong, Y. Zhang, and K. Zhang, Preparation and characterization of Ba-doped LaFeO3 nanofibers by electrospinning and their ethanol sensing properties. Mater. Chem. Phys. 213, 122 (2018).

    Article  CAS  Google Scholar 

  89. S. Smiy, M. Bejar, E. Dhahri, T. Fiorido, K. Aguir, and M. Bendahan, Preparation of double-doping LaFeO3 thin film for ethanol sensing application. J. Mol. Struct. 1267, 133543 (2022).

    Article  CAS  Google Scholar 

  90. W. Qin, Z. Yuan, Y. Shen, R. Zhang, and F. Meng, Phosphorus-doped porous perovskite LaFe1xPxO3δ nanosheets with rich surface oxygen vacancies for ppb level acetone sensing at low temperature. Chem. Eng. J. 431, 134280 (2022).

    Article  CAS  Google Scholar 

  91. Z. Meng, B. Tong, L. Shen, L. Xu, W. Chu, W. Wei, X. Xu, Y. Liu, L. Pi, S. Zhang, C. Zhou, Z. Ma, G. Meng, and Z. Sheng, Au nanoparticle modified single-crystalline p-type LaRhO3/SrTiO3 heterostructure for high performing VOCs sensor. Ceram. Int. 46, 22140 (2020).

    Article  CAS  Google Scholar 

  92. H. Zhang and J. Yi, Enhanced ethanol gas sensing performance of ZnO nanoflowers decorated with LaMnO3 perovskite nanoparticles. Mater. Lett. 216, 196 (2018).

    Article  CAS  Google Scholar 

  93. Q. Rong, Y. Zhang, K. Li, H. Wang, J. Hu, Z. Zhu, J. Zhang, and Q. Liu, Ag-LaFeO3/NCQDs pn heterojunctions for superior methanol gas sensing performance. Mater. Res. Bull. 115, 55 (2019).

    Article  CAS  Google Scholar 

  94. A. Maity, A. Ghosh, and S.B. Majumder, Engineered spinel–perovskite composite sensor for selective carbon monoxide gas sensing. Sens. Actuators B: Chem. 225, 128 (2016).

    Article  CAS  Google Scholar 

  95. X. Xu, S. Wang, Y. Chen, W. Liu, X. Wang, H. Jiang, S. Ma, and P. Yun, CsPbBr3-based nanostructures for room-temperature sensing of volatile organic compounds. ACS Appl. Mater. Interfaces 14, 39524 (2022).

    Article  CAS  Google Scholar 

  96. K.-C. Hsu, T.-H. Fang, S.-H. Chen, and E.-Y. Kuo, Gas sensitivity and sensing mechanism studies on ZnO/La0.8Sr0.2Co0.5Ni0.5O3 heterojunction structure. Ceram. Int. 45, 8744 (2019).

    Article  CAS  Google Scholar 

  97. N. Sharma, H.S. Kushwaha, S.K. Sharma, and K. Sachdev, Fabrication of LaFeO3 and rGO-LaFeO3 microspheres based gas sensors for detection of NO2 and CO. RSC Adv. 10, 1297 (2020).

    Article  CAS  Google Scholar 

  98. K.-C. Hsu, T.-H. Fang, Y.-J. Hsiao, and P.-C. Wu, Response and characteristics of TiO2/perovskite heterojunctions for CO gas sensors. J. Alloys Compd. 794, 576 (2019).

    Article  CAS  Google Scholar 

  99. Y.M. Zhang, J. Zhang, J.L. Chen, Z.Q. Zhu, and Q.J. Liu, Improvement of response to formaldehyde at Ag–LaFeO3 based gas sensors through incorporation of SWCNTs. Sens. Actuators B: Chem. 195, 509 (2014).

    Article  CAS  Google Scholar 

  100. K. Shimanoe, N. Ma, T. Oyama, M. Nishibori, and K. Watanabe, High performance of SnO2-based gas sensor by introducing perovskite-type oxides. ECS Trans. 75, 31 (2016).

    Article  CAS  Google Scholar 

  101. H.-J. Lin, J.P. Baltrus, H. Gao, Y. Ding, C.-Y. Nam, P. Ohodnicki, and P.-X. Gao, Perovskite nanoparticle-sensitized Ga2O3 nanorod arrays for CO detection at high temperature. ACS Appl. Mater. Interfaces 8, 8880 (2016).

    Article  CAS  Google Scholar 

  102. W. Qin, Z. Yuan, H. Gao, R. Zhang, and F. Meng, Perovskite-structured LaCoO3 modified ZnO gas sensor and investigation on its gas sensing mechanism by first principle. Sens. Actuators B: Chem. 341, 130015 (2021).

    Article  CAS  Google Scholar 

  103. A.S. Chizhov, M.N. Rumyantseva, K.A. Drozdov, I.V. Krylov, M. Batuk, J. Hadermann, D.G. Filatova, N.O. Khmelevsky, V.F. Kozlovsky, L.N. Maltseva, and A.M. Gaskov, Photoresistive gas sensor based on nanocrystalline ZnO sensitized with colloidal perovskite CsPbBr3 nanocrystals. Sens. Actuators B: Chem. 329, 129035 (2021).

    Article  CAS  Google Scholar 

  104. J. Casanova-Chafer, R. Garcia-Aboal, P. Atienzar, C. Bittencourt, and E. Llobet, Perovskite@Graphene nanohybrids for breath analysis: a proof-of-concept. Chemosensors 9, 215 (2021).

    Article  CAS  Google Scholar 

  105. J. Casanova-Cháfer, R. García-Aboal, P. Atienzar, and E. Llobet, Gas sensing properties of perovskite decorated graphene at room temperature. Sensors 19, 4563 (2019).

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Natural Science Foundation of China (Grant No. 52005248) and Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant No. SJCX22_1067).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue Li or Minghao Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, X., Shi, Y., Wang, H. et al. A Review on Advances in the Gas-Sensitive Properties of Perovskite Materials. J. Electron. Mater. 52, 5795–5809 (2023). https://doi.org/10.1007/s11664-023-10582-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10582-9

Keywords

Navigation