Skip to main content
Log in

A fast response & recovery acetone gas sensor based on BiFeO3 nanomaterials with high sensitivity and low detection limit

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In present work, BiFeO3 was synthesized at different temperatures (450, 500, 550 °C) by tartaric acid sol–gel method. XRD, SEM and TEM were used to characterize microstructure and morphology of as-prepared BiFeO3. All results indicate that as-prepared BiFeO3 is the nanocrystal with single rhombohedrally distorted perovskite structure with the space group R3c and has irregular shapes and the average grain sizes between 50 and 120 nm. BiFeO3 nanomaterials have a low working temperature of 240 °C and high acetone gas response. Especially for BiFeO3 grown at 500 °C, the sensitivity to 50 ppm acetone is about as high as 30 at 240 °C. The response and recovery time of BiFeO3 sensors is respectively about 5 and 18 s. Moreover, BiFeO3 sensors have a low detection limit and the logarithmic curves of the sensitivity and concentration of BiFeO3 sensors satisfy the linear relationship in the low detection range. These results demonstrate that BiFeO3 can be used as an ideal candidate to fabricate high response acetone sensor. Gas sensing mechanism of BiFeO3 is also discussed on the basis of adsorption and desorption of reducing acetone gas and the reaction with oxygen species on the surface of BiFeO3 nanomaterials. This work can give rise to an interesting choice for researching excellent gas sensing properties of other nonstoichiometric oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H.-L. Yu, L. Li, X.-M. Gao, Y. Zhang, F. Meng, T.-S. Wang, G. Xiao, Y.-J. Chen, C.-L. Zhu, Sens. Actuators B 171–172, 679 (2012)

    Article  Google Scholar 

  2. S. Cao, W. Zeng, H. Zhang, Y. Li, J. Mater. Sci.: Mater. Electron. 26, 2871 (2015)

    Google Scholar 

  3. Z. Li, W. Chen, W. Zeng, J. Mater. Sci.: Mater. Electron. 26, 1554 (2015)

    Google Scholar 

  4. H. Wang, H. Li, S. Li, L. Liu, L. Wang, X. Guo, J. Mater. Sci.: Mater. Electron. 28, 958 (2017)

    Google Scholar 

  5. C. Su, Y. Li, S. Li, L. Liu, X. Guo, H. Lian, X. Guan, J. Mater. Sci.: Mater. Electron. 27, 6829 (2016)

    Google Scholar 

  6. Q.Z. Zeng, S.Y. Ma, W.X. Jin, H.M. Yang, H. Chen, Q. Ge, L. Ma, J. Alloys Compd. 705, 427 (2017)

    Article  Google Scholar 

  7. M. Wu, W. Zeng, Q. He, J. Zhang, Mater. Sci. Semicond. Process. 16, 1495 (2013)

    Article  Google Scholar 

  8. J. Hu, F. Gao, Z. Zhao, S. Sang, P. Li, W. Zhang, X. Zhou, Y. Chen, Appl. Surf. Sci. 363, 181 (2016)

    Article  Google Scholar 

  9. S. Hussain, T. Liu, M. Kashif, L. Lin, S. Wu, W. Guo, W. Zeng, U. Hashim, Mater. Sci. Semicond. Process. 18, 52 (2014)

    Article  Google Scholar 

  10. C.-W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, J. Appl. Phys. 103, 031101 (2008)

    Article  Google Scholar 

  11. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006)

    Article  Google Scholar 

  12. Y. Li, X. Liu, Y. Sun, S. Sheng, H. Liu, P. Yang, S. Yang, J. Alloys Compd. 644, 602 (2015)

    Article  Google Scholar 

  13. A.S. Poghossian, H.V. Abovian, P.B. Avakian, S.H. Mkrtchian, V.M. Haroutunian, Sens. Actuators B 4, 545 (1991)

    Article  Google Scholar 

  14. X.-L. Yu, Y. Wang, Y.-M. Hu, C.-B. Cao, H.L.-W. Chan, J. Am. Ceram. Soc. 92, 3105 (2009)

    Article  Google Scholar 

  15. G. Dong, H. Fan, H. Tian, J. Fang, Q. Li, RSC Adv. 5, 29618 (2015)

    Article  Google Scholar 

  16. S. Das, S. Rana, S.M. Mursalin, P. Rana, A. Sen, Sens. Actuators B 218, 122 (2015)

    Article  Google Scholar 

  17. M. Sobhan, Q. Xu, A. Katoch, F. Anariba, S.S. Kim, P. Wu, Nanotechnology 26, 175501 (2015)

    Article  Google Scholar 

  18. M. Norayr, Sensor Test Conferences 749 (2011)

  19. M. Dziubaniuk, R. Bujakiewicz-Korońska, J. Suchanicz, J. Wyrwa, M. Rękas, Sens. Actuators B 188, 957 (2013)

    Article  Google Scholar 

  20. T. Tong, J. Chen, D. Jin, J. Cheng, Mater. Lett. 197, 160–162 (2017)

    Article  Google Scholar 

  21. K. Muthukrishnan, M. Vanaraja, S. Boomadevi, R.K. Karn, V. Singh, P.K. Singh, K. Pandiyan, J. Alloys Compd. 673, 138 (2016)

    Article  Google Scholar 

  22. Q. Jia, H. Ji, Y. Zhang, Y. Chen, X. Sun, Z. Jin, J. Hazard. Mater. 276, 262 (2014)

    Article  Google Scholar 

  23. W. Zeng, W. Chen, Z. Li, H. Zhang, T. Li, Mater. Res. Bull. 65, 157 (2015)

    Article  Google Scholar 

  24. X. Li, D. Li, J. Xu, H. Jin, D. Jin, X. Peng, B. Hong, J. Li, Y. Yang, H. Ge, X. Wang, Powder Technol. 318, 40 (2017)

    Article  Google Scholar 

  25. M. Hjiri, L. El Mir, S.G. Leonardi, A. Pistone, L. Mavilia, G. Neri, Sens. Actuators B 196, 413 (2014)

    Article  Google Scholar 

  26. C. Dong, X. Xiao, G. Chen, H. Guan, Y. Wang, I. Djerdj, RSC Adv. 5, 4880 (2015)

    Article  Google Scholar 

  27. M. D’Arienzo, L. Armelao, C.M. Mari, S. Polizzi, R. Ruffo, R. Scotti, F. Morazzoni, J. Am. Chem. Soc. 133, 5296 (2011)

    Article  Google Scholar 

  28. Q. Xiang, G. Meng, Y. Zhang, J. Xu, P. Xu, Q. Pan, W. Yu, Sens. Actuators B 143, 635 (2010)

    Article  Google Scholar 

  29. N. Yamazoe, K. Shimanoe, Sens. Actuators B 128, 566 (2008)

    Article  Google Scholar 

  30. S. Choopun, A. Tubtimtae, T. Santhaveesuk, S. Nilphai, E. Wongrat, N. Hongsith, Appl. Surf. Sci. 256, 998 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Research Project of Jiangsu Education (No. 163230102) and postdoctoral foundation of Jiangsu Province (No. 1402008c). Songtao Dong acknowledges the open project of National Laboratory of Solid State Microstructures at Nanjing University. The authors acknowledge the financial support from National Natural Science Youth Fund of China (No. 51702132).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yamei Zhang or Jun Xiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Xu, H., Dong, S. et al. A fast response & recovery acetone gas sensor based on BiFeO3 nanomaterials with high sensitivity and low detection limit. J Mater Sci: Mater Electron 29, 2193–2200 (2018). https://doi.org/10.1007/s10854-017-8132-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8132-7

Navigation