Skip to main content
Log in

The Fluorescent Materials Effect on Physical Parameters of Nematic Liquid Crystals

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This study presents the physical properties of fluorescent material-doped E7 nematic liquid crystals (NLC). Indium phosphide/zinc sulfide (InP/ZnS) quantum dots and rubrene dye were preferred as fluorescent materials. In order to examine the effect of different fluorescent materials on the physical properties of E7 NLC, the phase transition temperatures, wavelength-dependent absorbance values, and the electro-optical and dielectric parameters of composites were determined. The obtained results showed that both InP/ZnS quantum dots and rubrene dye change the electro-optical and dielectric properties of E7 NLC. According to this, it is thought that fluorescent material-doped NLC composites could become a focus of interest for future electro-optical device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Ranjkesh, N. Ebrahimpour, M.S. Zakerhamidi, and S.M. Seyedahmadian, Temperature-dependent dielectric property of a nematic liquid crystal doped with two differently–shaped tungsten oxide (W18O49) nanostructures. J. Mol. Liq. 348, 118024 (2022).

    Article  CAS  Google Scholar 

  2. H. Eskalen, M. Okumuş, and Ş Özgan, Electro-optical, thermal and dielectric properties of ternary mixture of E7/6CB/6BA liquid crystal mixture complex. Optik 187, 223 (2019).

    Article  CAS  Google Scholar 

  3. M. Malik, M.A. Iqbal, W. Shahid, S.Z.U. Din, M. Ikram, N. Anwar, S. Shahid, and F. Idrees, Overview of Liquid Crystal Research: Computational Advancements, Challenges, Future Prospects and Applications, in Liquid Crystals (London: IntechOpen, 2022).

  4. J. Sun, K. Wu, N. Liu, H. Xing, M. Chai, T. Zhao, C. Yang, Y. Xin, J. Xing, and W. Ye, Influence of alignment layer material on the image sticking in liquid crystal display. Mol. Cryst. Liq. Cryst. 736(1), 30 (2022).

    Article  CAS  Google Scholar 

  5. Y. Xing, Z. Guo, and Q. Li, Reflective blue phase liquid crystal displays with double-side concave-curved electrodes. Liq. Cryst. 45(4), 507 (2018).

    Article  CAS  Google Scholar 

  6. M. Zhao, Q. Zhang, and Z. Xia, Narrow-band emitters in LED backlights for liquid-crystal displays. Mater. Today 40, 246 (2020).

    Article  CAS  Google Scholar 

  7. G. Pathak, G. Hegde, and V. Prasad, Investigation of electro-optical and dielectric properties of nematic liquid crystal dispersed with biowaste based porous carbon nanoparticles: Increased birefringence for display applications. J. Mol. Liq. 314, 113643 (2020).

    Article  CAS  Google Scholar 

  8. B.P. Singh, S. Sikarwar, K.K. Pandey, R. Manohar, M. Depriester, and D.P. Singh, Carbon nanotubes blended nematic liquid crystal for display and electro-optical applications. Electron. Mater. 2(4), 466 (2021).

    Article  Google Scholar 

  9. M.H. Majles Ara and Z. Dehghani, Improvement of the third order nonlinear optical properties of nematic liquid crystal under the influence of different compositional percentage of doped SWCNT and the external electric field. J. Mol. Liq. 275, 281 (2019).

    Article  CAS  Google Scholar 

  10. H. Mbarak, A.K. Kodeary, S.M. Hamidi, E. Mohajarani, and Y. Zaatar, Control of nonlinear refractive index of Au NPs doped with nematic liquid crystal under external electric field. Optik 198, 163299 (2019).

    Article  CAS  Google Scholar 

  11. A. Parveen, J. Prakash, and G. Singh, Impact of strontium titanate nanoparticles on the dielectric, electro-optical and electrical response of a nematic liquid crystal. J. Mol. Liq. 354, 118907 (2022).

    Article  CAS  Google Scholar 

  12. R. Vafaie, A. Vahedi, M.S. Zakerhamidi, and H. Tajelli, Dielectric and electro optical properties of 6CHBT nematic liquid crystals doped with MgO nanoparticles. Liq. Cryst. 48(10), 1417 (2021).

    Article  Google Scholar 

  13. P.K. Singh, P. Dubey, R. Dabrowski, and R. Dhar, Impact of dispersed graphene oxide on thermodynamical, optical, electro optical and dielectric properties of nematic liquid crystal. Liq. Cryst. 49(4), 456 (2022).

    Article  CAS  Google Scholar 

  14. M.S. Kim, Y.J. Lim, S. Yoon, M.-K. Kim, P. Kumar, S.-W. Kang, W.-S. Kang, G.-D. Lee, and H.S. Lee, Luminance-controlled viewing angle-switchable liquid crystal display using optically isotropic liquid crystal layer. Liq. Cryst. 38(3), 371 (2011).

    Article  CAS  Google Scholar 

  15. A. Badawi, A.H. Al Otaibi, A.M. Albaradi, N. Al-Hosiny, and S.E. Alomairy, Tailoring the energy band gap of alloyed Pb1−xZnxS quantum dots for photovoltaic application. J. Mater. Sci. Mater. Electron. 29, 20914 (2018).

    Article  CAS  Google Scholar 

  16. I. Devadoss, P. Sakthivel, and A. Krishnamoorthy, Band gap tailoring and photoluminescence performance of CdS quantum dots for white LED applications: influence of Ba2+ and Zn2+ ions. J. Mater. Sci. Mater. Electron. 32, 5729 (2021).

    Article  CAS  Google Scholar 

  17. J. Kumar, V. Prasad, and M. Manjunath, Quantum dots dispersed hockey stick nematic liquid crystal: Studies on dielectric permittivity, elastic constants and electrical conductivity. J. Mol. Liq. 266, 10 (2018).

    Article  CAS  Google Scholar 

  18. A. Roy, G. Pathak, J. Herman, S.J. Inamdar, A. Srivastava, and R. Manohar, InP/ZnS quantum-dot-dispersed nematic liquid crystal illustrating characteristic birefringence and enhanced electro-optical parameters. Appl. Phys. A 124, 273 (2018).

    Article  Google Scholar 

  19. Supreet, G. Singh, Recent advances on cadmium free quantum dots-liquid crystal nanocomposites. Appl. Mater. Today 21, 100840 (2020).

  20. S.S. Gandhi and L.-C. Chien, High transmittance optical films based on quantum dot doped nanoscale polymer dispersed liquid crystals. Opt. Mater. 54, 300 (2016).

    Article  CAS  Google Scholar 

  21. J. Tang, F. Liu, M. Lu, and D. Zhao, InP/ZnS quantum dots doped blue phase liquid crystal with wide temperature range and low driving voltage. Sci. Rep. 10, 18067 (2020).

    Article  CAS  Google Scholar 

  22. P. Zhou, Y. Li, S. Liu, and Y. Su, Colour 3D holographic display based on a quantum-dot-doped liquid crystal. Liq. Cryst. 46(10), 1478 (2019).

    Article  CAS  Google Scholar 

  23. A. Pidluzhna, P. Stakhira, G. Baryshnikov, A.J. Zavaraki, and H. Ågren, InP/ZnS quantum dots synthesis and photovoltaic application. Appl. Nanosci. (2022). https://doi.org/10.1007/s13204-022-02658-5.

    Article  Google Scholar 

  24. R.M. Christie, Handbook of Textile and Industrial Dyeing: Principles, Processes and Types of Dyes (Volume 1 in Woodhead Publishing Series in Textiles, 2011).

  25. G. Pathak, K. Agrahari, G. Yadav, A. Srivastava, O. Strzezysz, and R. Manohar, Tuning of birefringence, response time, and dielectric anisotropy by the dispersion of fluorescent dye into the nematic liquid crystal. Appl. Phys. A 124, 463 (2018).

    Article  Google Scholar 

  26. S. Liu, H. Wu, X. Zhang, and W. Hu, Research progress of rubrene as an excellent multifunctional organic semiconductor. Front. Phys. 16(1), 13304 (2021).

    Article  Google Scholar 

  27. A.A. Al-Muntaser, H.R. Alamri, K. Sharma, S. Eltahir, and M.M. Makhlouf, Role of rubrene additive for reinforcing the structural, optical, and dispersion properties of polyvinyl alcohol films towards optoelectronic applications. Opt. Mater. 128, 112465 (2022).

    Article  CAS  Google Scholar 

  28. P. Selvaraj, P.-Y. Li, M. Antony, Y.-W. Wang, P.-W. Chou, Z.-H. Chen, C.-J. Hsu, and C.-Y. Huang, Rubbing-free liquid crystal electro-optic device based on organic single-crystal rubrene. Opt. Express 30(6), 9521 (2022).

    Article  CAS  Google Scholar 

  29. M. Honma, T. Horiuchi, M. Tanimoto, and T. Nose, Fundamental emission characteristics of light-emitting liquid crystal cells with rubrene-doped 4-cyano-4′-pentylbiphenyl. Appl. Phys. A 115, 873 (2014).

    Article  CAS  Google Scholar 

  30. M. Honma and T. Nose, Carrier mobility in rubrene-doped 4-cyano-4′-pentylbiphenyl studied by the time-of-flight method. J. Appl. Phys. 114, 103103 (2013).

    Article  Google Scholar 

  31. J. Pelaez and M. Wilson, Molecular orientational and dipolar correlation in the liquid crystal mixture E7: a molecular dynamics simulation study at a fully atomistic level. Phys. Chem. Chem. Phys. 9, 2968 (2007).

    Article  CAS  Google Scholar 

  32. C.-S. Yang, C.-J. Lin, R.-P. Pan, C.T. Que, K. Yamamoto, M. Tani, and C.-L. Pan, The complex refractive indices of the liquid crystal mixture E7 in the terahertz frequency range. J. Opt. Soc. Am. B 27(9), 1866 (2010).

    Article  CAS  Google Scholar 

  33. A. Sharma, P. Malik, R. Dhar, and P. Kumar, Improvement in electro-optical and dielectric characteristics of ZnO nanoparticles dispersed in a nematic liquid crystal mixture. Bull. Mater. Sci. 42, 215 (2019).

    Article  Google Scholar 

  34. F. Ostovari and Z. Dehghani, Influence of aminated graphene nanosheets on electro optical performance and nonlinear optical properties of nematic liquid crystal. J. Mol. Liq. 375, 121337 (2023).

    Article  CAS  Google Scholar 

  35. Z. Seidalilir, E. Soheyli, M. Sabaeian, and R. Sahraei, Enhanced electrochemical and electro-optical properties of nematic liquid crystal doped with Ni:ZnCdS/ZnS core/shell quantum dots. J. Mol. Liq. 320, 114373 (2020).

    Article  CAS  Google Scholar 

  36. G. Önsal, and Ü.H. Kaynar, Synthesis of doped ZnO nanoparticles and their effect on the dielectric and electro-optical characterization of nematic liquid crystals. J. Electron. Mater. 52, 2569 (2023).

    Article  Google Scholar 

  37. C.-C. Hsu, Y.-X. Chen, H.-W. Li, and J.-S. Hsu, Low switching voltage ZnO quantum dots doped polymer-dispersed liquid crystal film. Opt. Express 24(7), 7063 (2016).

    Article  CAS  Google Scholar 

  38. J. Kumar, R.K. Gupta, S. Kumar, and V. Manjuladevi, Electro-optic and dielectric studies on quantum dot doped nematic liquid crystal. Macromol. Symp. 357, 47 (2015).

    Article  CAS  Google Scholar 

  39. M. Honma, T. Horiuchi, M. Tanimoto, and T. Nose, Electrochemiluminescence properties of nematic liquid crystal cells doped with rubrene. Proc. SPIE 7414, 74140Y (2009).

    Article  Google Scholar 

  40. M. Honma, T. Horiuchi, K. Watanabe, and T. Nose, Influence of hole injection layer and work function of cathode on the performance of light-emitting liquid crystal cells with fluorescent dye-doped nematic liquid crystal. Jpn. J. Appl. Phys. 53, 112102 (2014).

    Article  Google Scholar 

  41. H. Eskalen, Ş Özgan, and S. Kerli, Synthesis, characterization of V2O5 nanoparticle and dispersion of them into nematic liquid crystal. Appl. Phys. A 125, 873 (2019).

    Article  CAS  Google Scholar 

  42. F. Jahanbakhsh, J.B. Poursamad, M.H. Majles Ara, A. Lorenz, H. Khoshsima, and M. Darabi, Dispersion of multiferroic BiFeO3 nanoparticles in nematic liquid crystals. Appl. Phys. A 125, 877 (2019).

    Article  CAS  Google Scholar 

  43. A. Alicilar, F. Akkurt, and N. Kaya, Orientation in nematic liquid crystals doped with orange dyes and effect of carbon nanoparticles. Chinese J. Chem. Phys. 23(3), 368 (2010).

    Article  CAS  Google Scholar 

  44. X. Liu, X. Xia, L. Yang, J. Zhu, M. Xu, G. Zhang, G. Xia, L. Qiu, and H. Lu, Physical properties of liquid crystals doped with CsPbBr3 quantum dots. Liq. Cryst. 48(10), 1357 (2021).

    Article  CAS  Google Scholar 

  45. P. Kumar, Neeraj, S.-W. Kang, S.H. Lee, and K.K. Raina, Analysis of dichroic dye doped polymer-dispersed liquid crystal materials for display devices. Thin Solid Films 520, 457 (2011).

  46. P. Kumar, V. Sharma, C. Jaggi, P. Malik, and K.K. Raina, Orientational control of liquid crystal molecules via carbon nanotubes and dichroic dye in polymer dispersed liquid crystal. Liq. Cryst. 44(5), 843 (2017).

    Article  CAS  Google Scholar 

  47. F. Ahmad, M. Jamil, Y.J. Jeon, L.J. Woo, J.E. Jung, and J.E. Jang, Investigation of nonionic diazo dye-doped polymer dispersed liquid crystal film. Bull. Mater. Sci. 35(2), 221 (2012).

    Article  CAS  Google Scholar 

  48. G. Yadav, R. Katiyar, G. Pathak, and R. Manohar, Effect of ion trapping behavior of TiO2 nanoparticles on different parameters of weakly polar nematic liquid crystal. J. Theor. Appl. Phys. 12, 191 (2018).

    Article  Google Scholar 

  49. G. Yadav, M. Kumar, A. Srivastava, and R. Manohar, SiO2 nanoparticles doped nematic liquid crystal system: an experimental investigation on optical and dielectric properties. Chin. J. Phys. 57, 82 (2019).

    Article  CAS  Google Scholar 

  50. B.P. Singh, S. Sikarwar, S. Tripathi, S. Agarwal, M. Sah, R. Manohar, and K.K. Pandey, Thermodynamic and spectroscopic characterization of a weakly polar liquid crystalline compound dispersed with polyvinyl pyrrolidone capped gold nanoparticles. J. Mol. Liq. 354, 118889 (2022).

    Article  CAS  Google Scholar 

  51. Neeraj, P. Kumar, and K.K. Raina, Changes in the electro-optical behaviour of ferroelectric liquid crystal mixture via silica nanoparticles doping. Opt. Mater. 34, 1878 (2012).

  52. D. Singh, U.B. Singh, M.B. Pandey, R. Dabrowski, and R. Dhar, Enhancement in electro-optical parameters of nematic liquid crystalline material with SWCNTs. Opt. Mater. 84, 16 (2018).

    Article  CAS  Google Scholar 

  53. G. Kaur, Khushboo, and P. Malik, Mesomorphic, electro-optic and dielectric behavior of self-assembled nanocomposite materials: Nematic mixture doped with carbon coated cobalt nanoparticles. J. Mol. Liq. 351, 118639 (2022).

  54. R. Nasri, T. Missaoui, A. Hbibi, and T. Soltan, Enhanced dielectric properties of nematic liquid crystal doped with ferroelectric nanoparticles. Liq. Cryst. 48(10), 1429 (2021).

    Article  CAS  Google Scholar 

  55. A. Katariya-Jain and R.R. Deshmukh, Effects of dye doping on electro-optical, thermo-electro-optical and dielectric properties of polymer dispersed liquid crystal films. J. Phys. Chem. Solids 160, 110363 (2022).

    Article  CAS  Google Scholar 

  56. C.-Y. Huang, P. Selvaraj, G. Senguttuvan, and C.-J. Hsu, Electro-optical and dielectric properties of TiO2 nanoparticles in nematic liquid crystals with high dielectric anisotropy. J. Mol. Liq. 286, 110902 (2019).

    Article  CAS  Google Scholar 

  57. H.H.M. Elkhalgi, S. Khandka, N. Yadav, R. Dhar, and R. Dabrowski, Effects of manganese (II) titanium oxide nano particles on the physical properties of a room temperature nematic liquid crystal 4-(trans-4′-n-hexylcyclohexyl) isothiocyanatobenzene. J. Mol. Liq. 268, 223 (2018).

    Article  CAS  Google Scholar 

  58. M. Yıldırım, O. Köysal, G. Önsal, and E. Gümüş, Effect of iron phthalocyanine (FePc) concentration on electrical and dielectric properties of the nematic liquid crystal composites. J. Mol. Liq. 223, 868 (2016).

    Article  Google Scholar 

  59. Ö. Tüzün Özmen, K. Goksen, A. Demir, M. Durmus, and O. Köysal, Investigation of photoinduced change of dielectric and electrical properties of indium (III) phthalocyanine and fullerene doped nematic liquid crystal. Synth. Met. 162(24), 2188 (2012).

    Article  Google Scholar 

  60. R. Manohar, K.K. Pandey, A.K. Srivastava, A.K. Misra, and S.P. Yadav, Sign inversion of dielectric anisotropy in nematic liquid crystal by dye doping. J. Phys. Chem. Solids 71, 1311 (2010).

    Article  CAS  Google Scholar 

  61. K. Kumar Pandey, A.K. Bawaria, and P. Priyadarshi, Effect of nano particles on the dielectric anisotropy of liquid crystal. J. Sci. Res. Adv. 2(3), 103 (2015).

    Google Scholar 

  62. R.R. Deshmukh and A.K. Jain, The complete morphological, electro-optical and dielectric study of dichroic dye-doped polymer-dispersed liquid crystal. Liq. Cryst. 41(7), 960 (2014).

    Article  CAS  Google Scholar 

  63. R.R. Deshmukh and A.K. Jain, Effect of anti-parallel and twisted alignment techniques on various properties of polymer stabilised liquid crystal (PSLC) films. Liq. Cryst. 43(4), 436 (2016).

    Article  CAS  Google Scholar 

  64. S. Mishra, A.M. Sontakke, R.K. Gupta, S. Kumar, and V. Manjuladevi, Dielectric spectroscopy studies of silver nanorod doped nematic liquid crystal. Mater. Today: Proc. 50, 2587 (2022).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gülsüm Kocakülah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kocakülah, G., Köysal, O. The Fluorescent Materials Effect on Physical Parameters of Nematic Liquid Crystals. J. Electron. Mater. 52, 5707–5718 (2023). https://doi.org/10.1007/s11664-023-10522-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10522-7

Keywords

Navigation