Skip to main content
Log in

Spectroscopic Characterization and Luminescence Study of Zinc Aluminate Nanocrystals Prepared by Microwave Combustion Method using Natural Black Pepper as Combustion Agent

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Undoped znc aluminate (ZnAl2O4) nanocrystals were prepared via microwave combustion using natural black pepper extract as fuel. We present the effect of annealing temperatures on the luminescence, structural, and optical properties of zinc aluminate nanocrystals. The samples were chemically and structurally characterized by different techniques including x-ray diffraction, energy dispersive x-ray spectroscopy, Fourier-transform infra-red, and Raman spectroscopy. Further, the optical and luminescence behavior was studied by diffuse reflectance and photoluminescence measurements. The results indicated the formation of normal spinel, single phase ZnAl2O4 with the size in the range 8–22 nm changed by the annealing temperature. No structural transformation was observed after annealing up to 900°C. The presence of Zn-O, Al-O, and Al-Zn bonds and the change in the bond length of the Zn-O bond after annealing the zinc aluminate spinel revealed the existence of certain antisite defects. The annealed zinc aluminate nanocrystals presented an improvement in optical reflectivity (86%) in the visible region and a strong absorption band near 220 nm. In the photoluminescence study, emission bands in the violet-blue regions with weak emission in the green region were observed under UV excitation wavelengths. It was found that the annealing temperature influences a major impact on defects formation and defect-related luminescence characteristics. A significantly enhanced broad blue emission band centered at ~ 450 nm was dominant after thermal treatment, confirmed by the CIE diagram. The possible electronic transitions are presented and discussed by an energy-level diagram. The average decay time of the ZnAl2O4 nanocrystals annealed at 900°C measured by photoluminescence decay was 0.21 ms. Thus, prepared ZnAl2O4 nanocrystals can be potentially applied for solid-state lighting as blue-emitting luminescent material and for biosensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.T. Tran, D.Q. Trung, N. Tu, D.D. Anh, L.T.H. Thu, N.V. Du, N.V. Quang, N.T. Huyen, N.D.T. Kien, D.X. Viet, N.D. Hung, and P.T. Huy, Single-phase far-red-emitting ZnAl2O4:Cr3+ phosphor for application in plant growth LEDs. J. Alloys Compd. 884, 161077 (2021).

    Article  CAS  Google Scholar 

  2. S. Shivakumar, F.C.J.M. VanVeggel, and M. Raudsepp, Bright white light through up-conversion of a single NIR source from sol-gel-derived thin film made with ln3+-doped laf3 nanoparticles. J. Am. Chem. Soc. 127, 12464 (2005).

    Article  Google Scholar 

  3. B.S. Ravikumar, H. Nagabhushana, S.C. Sharma, Y.S. Vidya, and K.S. Anantharaju, Calotropis procera mediated combustion synthesis of ZnAl2O4:Cr3+ nanophosphors: structural and luminescence studies. Spectrochim. Acta A Mol. Biomol. Spectrosc. 136, 1027 (2015).

    Article  CAS  Google Scholar 

  4. I. Miron and I. Grozescu, Hydrothermal synthesis of ZnAl2O4:Cr3+ nanocrystals. Optoelectron. Adv. Mater. Rapid Commun. 6, 673 (2012).

    CAS  Google Scholar 

  5. C. Ragupathi, J.J. Vijaya, S. Narayanan, L. John Kennedy, and S. Ramakrishna, Catalytic properties of nanosized zinc aluminates prepared by green process using Opuntia dilenii haw plant extract. Chinese J. Catal. 34, 1951 (2013).

    Article  CAS  Google Scholar 

  6. K.G. Tshabalala, S.H. Cho, J.K. Park, S.S. Pitale, I.M. Nagpure, R.E. Kroon, and H.C. Swart, Luminescence properties of Ce3+ and Tb3+ co-activated ZnAl2O4 phosphor. Physica B Condens. Matter. 407, 1489 (2012).

    Article  CAS  Google Scholar 

  7. S.K. Sampath and J.F. Cordaro, Optical properties of zinc aluminate, zinc gallate, and zinc aluminogallate spinels. J. Am. Ceram. Soc. 81, 649 (1998).

    Article  CAS  Google Scholar 

  8. K.G. Tshabalala, S.H. Cho, J.K. Park, S.S. Pitale, I.M. Nagpure, R.E. Kroon, H.C. Swart, and O.M. Ntwaeaborwa, Luminescent properties and X-ray photoelectron spectroscopy study of ZnAl2O4:Ce3+, Tb3+ phosphor. J. Alloys Compd. 509, 10115 (2011).

    Article  CAS  Google Scholar 

  9. S. Sumathi and A. Kavipriya, Structural, optical and photocatalytic activity of cerium doped zinc aluminate. Solid State Sci. 65, 52 (2017).

    Article  CAS  Google Scholar 

  10. M. Jain, A. Gundimeda, A. Kumar, S. Kumar, G. Gupta, S.O. Won, K.H. Chae, A. Vij, and A. Thakur, Enhanced near-infrared luminescence in zinc aluminate bestowed by fuel-blended combustion approach. J. Alloys Compd. 797, 148 (2019).

    Article  CAS  Google Scholar 

  11. S.F. Wang, G.Z. Sun, L.M. Fang, L. Lei, X. Xiang, and X.T. Zu, A comparative study of ZnAl2O4 nanoparticles synthesized from different aluminum salts for use as fluorescence materials. Sci. Rep. 5, 12849 (2015).

    Article  CAS  Google Scholar 

  12. L. Cornu, M. Duttine, M. Gaudon, and V. Jubera, Luminescence switch of Mn-Doped ZnAl2O4 powder with temperature. J. Mater. Chem. C. 2, 9512 (2014).

    Article  CAS  Google Scholar 

  13. X.Y. Chen, C. Ma, S.P. Bao, and Z. Li, Synthesis and photoluminescence of ZnAl2O4:Eu3+ hollow nanophosphors using carbon nanospheres as hard templates. J. Colloid Interface Sci. 346, 8 (2010).

    Article  CAS  Google Scholar 

  14. C.C. Yang, S.Y. Chen, and S.Y. Cheng, Synthesis and physical characteristics of ZnAl2O4 nanocrystalline and ZnAl2O4/Eu core-shell structure via hydrothermal route. Powder Technol. 148, 3 (2004).

    Article  CAS  Google Scholar 

  15. M. Oghbaei and O. Mirzaee, Microwave versus conventional sintering: a review of fundamentals, advantages and applications. J. Alloys Compd. 494, 175 (2010).

    Article  CAS  Google Scholar 

  16. G.T. Anand, L.J. Kennedy, U. Aruldoss, and J.J. Vijaya, Structural, optical and magnetic properties of Zn1−xMnxAl2O4 (0 ⩽ x ⩽ 0.5) spinel nanostructures by one-pot microwave combustion technique. J. Mol. Struct. 1084, 244 (2015).

    Article  Google Scholar 

  17. G. Mathubala, A. Manikandan, S.A. Antony, and P. Ramar, Photocatalytic degradation of methylene blue dye and magneto-optical studies of magnetically recyclable spinel NixMn1-xFe2O4 (x = 0.0–1.0) nanoparticles. J. Mol. Struct. 1113, 79 (2016).

    Article  CAS  Google Scholar 

  18. S.A. Galema, Microwave chemistry. Chem. Soc. Rev. 26, 233 (1997).

    Article  CAS  Google Scholar 

  19. C. Ragupathi, L.J. Kennedy, and J.J. Vijaya, A new approach: Synthesis, characterization and optical studies of nano-zinc aluminate. Adv. Powder Technol. 25, 267 (2014).

    Article  CAS  Google Scholar 

  20. T. Gholami, M.S. Niasaria, and M. Sabet, Novel green synthesis of ZnAl2O4 and ZnAl2O4/graphene nanocomposite and comparison of electrochemical hydrogen storage and coulombic efficiency. J. Clean. Prod. 178, 14 (2018).

    Article  CAS  Google Scholar 

  21. A. Manikandan, M. Durka, M. AmuthaSelvi, and S. Arul Antony, Aloe vera plant extracted green synthesis, structural and opto-magnetic characterizations of spinel CoxZn1−xAl2O4 nano-catalysts. J. Nanosci. Nanotechnol. 16, 357 (2016).

    Article  CAS  Google Scholar 

  22. A. Kumar, K. Murugan, and M. Dhanya, Phytochemistry and therapeutic potential of black pepper [Piper nigrum (L.)] essential oil and piperine: a review. Clin. Phytosci. 7, 52 (2021).

    Article  Google Scholar 

  23. R. Augustine, N. Kalarikkal, and S. Thomas, A facile and rapid method for the black pepper leaf mediated green synthesis of silver nanoparticles and the antimicrobial study. Appl. Nanosci. 4, 809 (2014).

    Article  CAS  Google Scholar 

  24. J.G. Lee, Y. Chae, and Y. Shin, Chemical composition and antioxidant capacity of black pepper pericarp. Appl. Biol. Chem. 63, 35 (2020).

    Article  CAS  Google Scholar 

  25. V. Vikas, R. Lahariya, and A.K. Yadav, Khare, A facile green synthesis and optical characterization of nano zinc aluminate phosphor. ECS Trans. 107, 14489 (2022).

    Article  Google Scholar 

  26. D.Q. Trung, N. Tu, N.V. Quang, M.T. Tran, N.V. Du, and P.T. Huy, Non-rare-earth dual green and red-emitting Mn-doped ZnAl2O4 phosphors for potential application in plan-growth LEDs. J. Alloys Compd. 845, 156326 (2020).

    Article  CAS  Google Scholar 

  27. M.R. Parra and F.Z. Haque, Aqueous chemical route synthesis and the effect of calcination temperature on the structural and optical properties of ZnO nanoparticles. J. Mater. Res. Technol. 3, 363 (2014).

    Article  CAS  Google Scholar 

  28. R.W.G. Wyckoff, Crystal structures. Interscience. 2, 4 (1964).

    Google Scholar 

  29. H. Dixit, N. Tandon, S. Cottenier, R. Saniz, D. Lamoen, and B. Partoens, First-principles study of possible shallow donors in ZnAl2O4 spinel. Phys. Rev. B Condens. Matter Mater. Phys. 87, 174101 (2013).

    Article  Google Scholar 

  30. P. Kumari, Y. Dwivedi, and A. Bahadur, Analysis of bright red-orange emitting Mn2+: ZnAl2O4 spinel nanophosphor. Optik 154, 126 (2018).

    Article  CAS  Google Scholar 

  31. K.S. Ramaiah, R.D. Pilkington, A.E. Hill, R.D. Tomlinson, and A.K. Bhatnagar, Structural and optical investigations on CdS thin films grown by chemical bath technique. Mater. Chem. Phys. 68, 22 (2001).

    Article  CAS  Google Scholar 

  32. Y. Koseoglu, A simple microwave-assisted combustion synthesis and structural, optical and magnetic characterization of ZnO nanoplatelets. Ceram. Int. 40, 4673 (2014).

    Article  CAS  Google Scholar 

  33. V.G. Bairi, S.E. Bourdo, U.B. Nasini, S.K. Ramasahayam, F. Watanabe, B.C. Berry, and T. Viswanathan, Microwave-assisted synthesis of nitrogen and phosphorus co-doped mesoporous carbon and their potential application in alkaline fuel cells. Sci. Adv. Mater. 5, 1275 (2013).

    Article  CAS  Google Scholar 

  34. W.J. Qin, J. Sun, J. Yang, and X.W. Du, Control of Cu-doping and optical properties of ZnO quantum dots by laser ablation of composite targets. Mater. Chem. Phys. 130, 425 (2011).

    Article  CAS  Google Scholar 

  35. M. Foster, M. Furse, and D. Passno, An FTIR study of water thin films on magnesium oxide. Surf. Sci. 502, 102 (2002).

    Article  Google Scholar 

  36. C. Ragupathi, J.J. Vijaya, A. Manikandan, and L.J. Kennedy, Phytosynthesis of nanoscale ZnAl2O4 by using sesamum (sesamum indicum L.) optical and catalytic properties. J. Nanosci. Nanotechnol. 13, 8298 (2013).

    Article  CAS  Google Scholar 

  37. A. van Dijken, E.A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, The luminescence of nanocrystalline ZnO particles: the mechanism of the ultraviolet and visible emission. J. Lumin. 90, 454 (2000).

    Article  Google Scholar 

  38. V. D’Ippolito, G.B. Andreozzi, and D. Bersani, Lottici, Raman fingerprint of chromate, aluminate and ferrite spinels. J. Raman Spec. 46, 1255 (2015).

    Article  Google Scholar 

  39. J.L. Verble, Temperature-dependent light-scattering studies of the Verwey transition and electronic disorder in magnetite. Phys. Rev. B Condens. Matter Mater. Phys. 9, 5236 (1974).

    Article  CAS  Google Scholar 

  40. V. D’Ippolito and G.B. Andreozzi, Crystallographic and spectroscopic characterization of a natural Zn-rich spinel approaching the endmember gahnite (ZnAl2O4) composition. Mineral. Mag. 77, 2941 (2013).

    Article  Google Scholar 

  41. D. Dwibedi, C. Murugesan, M. Leskes, and P. Barpanda, Role of annealing temperature on cation ordering in hydrothermally prepared zinc aluminate (ZnAl2O4) spinel. Mater. Res. Bull. 98, 219 (2018).

    Article  CAS  Google Scholar 

  42. D. Visinescu, B. Jurca, A. Ianculescu, and O. Carp, Starch–A suitable fuel in new low-temperature combustion-based synthesis of zinc aluminate oxides. Polyhedron 30, 2824 (2011).

    Article  CAS  Google Scholar 

  43. S.F. Wang, F. Gu, M.K. Lu, X.F. Cheng, W.G. Zou, G.J. Zhou, S.M. Wang, and Y.Y. Zhou, Synthesis and photoluminescence characteristics of Dy3+-doped ZnAl2O4 nanocrystals via a combustion process. J. Alloys Compd. 394, 255 (2005).

    Article  CAS  Google Scholar 

  44. V. Piriyawong, V. Thongpool, P. Asanithi, and P. Limsuwan, Preparation and characterization of alumina nanoparticles in deionized water using laser ablation technique. J. Nanomater. 6, 1 (2012).

    Article  Google Scholar 

  45. M. Jain, R. Kumar, S.O. Won, K.H. Chae, A. Vij, and A. Thakur, Defect states and kinetic parameter analysis of ZnAl2O4 nanocrystals by x-ray photoelectron spectroscopy and thermoluminescence. Sci. Rep. 10, 385 (2020).

    Article  CAS  Google Scholar 

  46. A. Fernandez-Osorio, C.E. Rivera, A. Vazquez-Olmos, and J. Chavez, Luminescent ceramic nano-pigments based on terbium-doped zinc aluminate: synthesis, properties and performance. Dyes Pigments 119, 22 (2015).

    Article  CAS  Google Scholar 

  47. E.M.M. Ewais, D.H.A. Besisa, A.A.M. El-Amir, S.M. El-Sheikh, and D.E. Rayan, Optical properties of nanocrystalline magnesium aluminate spinel synthesized from industrial wastes. J. Alloys Compd. 649, 159 (2015).

    Article  CAS  Google Scholar 

  48. G.S. Reddy, H. Sharma, P. Bhaskar, and M. Manjunatha, Effect of type of fuel used and calcination temperature on the disorder-order transformation of zinc aluminate spinel during combustion synthesis. Mater. Chem. Phys. 253, 123 (2020).

    Google Scholar 

  49. C. Jagadeeshwaran and R. Murugaraj, Investigation on structural, optical, and electrical properties for sintered Mg-Zn aluminate systems. J. Mater. Sci. Mater. 31, 6744 (2020).

    Article  CAS  Google Scholar 

  50. T. Schmidt, K. Lischka, and W. Zulehner, Excitation-power dependence of the near-band-edge photoluminescence of semiconductors. Phys. Rev. B Condens. Matter Mater. Phys. 45, 8989 (1992).

    Article  CAS  Google Scholar 

  51. R. Bhargava, P.K. Sharma, R.K. Dutta, S. Kumar, A.C. Pandey, and N. Kumar, Influence of Co-doping on the thermal, structural, and optical properties of sol–gel derived ZnO nanoparticles. Mater. Chem. Phys. 120, 393 (2010).

    Article  CAS  Google Scholar 

  52. D.P. Norton, M.E. Overberg, S.J. Pearton, and K. Pruessner, Ferromagnetism in cobalt-implanted ZnO. Appl. Phys. Lett. 83, 5488 (2003).

    Article  CAS  Google Scholar 

  53. T. Tangcharoen, T. Thienprasert, and C. Kongmark, Effect of calcination temperature on structural and optical properties of MAl2O4 (M = Ni, Cu, Zn) aluminate spinel nanoparticles. J. Adv. Cera. 8, 352 (2019).

    Article  CAS  Google Scholar 

  54. L. Cornu, M. Gaudon, and V. Jubera, ZnAl2O4 as a potential sensor: Variation of luminescence with thermal history. J. Mater. Chem. C 1, 5419 (2013).

    Article  CAS  Google Scholar 

  55. N. Vinitha, J. Baby, K.M. Krishna, in AIP Conference Proceedings (2019), p. 030034

  56. P.J. Deren, D. Stefanska, M. Ptak, M. Mazczka, W. Walerczyk, and G. Banach, Origin of violet-blue emission in Ti-doped gahnite. J. Am. Ceram. Soc. 97, 1883 (2014).

    Article  CAS  Google Scholar 

  57. A. Verma, D.P. Bisen, S. Nema, I.P. Sahu, T. Ray, N. Brahme, A. Verma, and A.K. Singh, Investigation of structural, luminescence, and anti-bacterial properties of novel Zn1−xEuxAl2−yO4Sry phosphor. J. Mater. Sci. Mater. 33, 15858 (2022).

    Article  CAS  Google Scholar 

  58. N. Pathak, P.S. Ghosh, S. Saxena, D. Dutta, A.K. Yadav, D. Bhattacharyya, S.N. Jha, and R.M. Kadam, Exploring defect-induced emission in ZnAl2O4: An exceptional color-tunable phosphor material with diverse lifetimes. Inorg. Chem. 7, 3963 (2018).

    Article  Google Scholar 

  59. S.V. Motloung, P. Kumari, L.F. Koao, T.E. Motaung, T.T. Hlatshwayo, and M.J. Mochane, Effects of annealing time on the structure and optical properties of ZnAl2O4/ZnO prepared via citrate sol-gel process. Mater. Today Commun. 14, 294 (2018).

    Article  CAS  Google Scholar 

  60. S.A. Mirbagheri, S.M. Masoudpanah, and S. Alamolhoda, Structural and optical properties of ZnAl2O4 powders synthesized by solution combustion method: effects of mixture of fuels. Optik 204, 164 (2020).

    Article  Google Scholar 

  61. M.T. Tsai, Y.S. Chang, I.B. Huang, and B.Y. Pan, Luminescent and structural properties of manganese-doped zinc aluminate spinel nanocrystal. Ceram. Int. 39, 3691 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The first and corresponding authors would like to acknowledge the experimental support provided by DST-FIST Grant No- SR/FST/PS-l/2018/48 of Govt. of India.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Vikas, VL, RY, RKT, AK, SKG. Vikas and VL contributed significantly to analysis and manuscript preparation. The first draft of the manuscript was written by Vikas and VL, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.”

Corresponding author

Correspondence to Vikas Lahariya.

Ethics declarations

Conflict of interest

We hereby declare no conflict of interest associated with this publication and there has been no significant financial interest and support for this work that could have influenced its outcome. “The authors declare that no funds, grants, were received during the preparation of this manuscript.”

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 593 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vikas, Yadav, R., Lahariya, V. et al. Spectroscopic Characterization and Luminescence Study of Zinc Aluminate Nanocrystals Prepared by Microwave Combustion Method using Natural Black Pepper as Combustion Agent. J. Electron. Mater. 52, 4921–4934 (2023). https://doi.org/10.1007/s11664-023-10445-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10445-3

Keywords

Navigation