Skip to main content
Log in

Stanene: State of the Art and Future Prospects

  • Review Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Two-dimensional materials have benefited scientists and technologists in many ways over the past two decades. Stanene is one of the most recent members of the 2D family, with a stronger spin–orbit coupling than graphene, which has led to predictions of several interesting properties. However, in spite of extensive theoretical investigations over the past few years, experimental realization has been limited to growth by either the molecular beam epitaxy or liquid-phase exfoliation using laser ablation. On the application front, capabilities related to Li-ion batteries and gas sensors have been modeled using first-principles DFT calculations. In this short review, we present the current state of the art in terms of both experimental and theoretical efforts related to stanene and possible future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reproduced with permission from Reference 35 (c) https://doi.org/10.1038/srep31073 Synthesis of stanene by femto laser ablation.

Fig. 3
Fig. 4

Reproduced with permission from Reference 43 https://doi.org/10.1021/acs.jpcc.6b04481.

Fig. 5

Similar content being viewed by others

Data Availability

The data and figures used in the review paper were obtained from different sources with proper citation and permission.

References

  1. F. Schwierz, Graphene transistors. Nat. Nanotechnol. 5, 487 (2010).

    Article  CAS  Google Scholar 

  2. S. Cahangirov, M. Topsakal, E. Aktürk, H. Şahin, and S. Ciraci, Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 102, 236804 (2009).

    Article  CAS  Google Scholar 

  3. B. Feng, Z. Ding, S. Meng, Y. Yao, X. He, P. Cheng, L. Chen, and K. Wu, evidence of silicene in honeycomb structures of silicon on Ag(111). Nano Lett. 12, 3507 (2012).

    Article  CAS  Google Scholar 

  4. M. E. Dávila, L. C. Lew Yan Voon, J. Zhao, and G. Le Lay, Chapter Four - Elemental Group IV Two-Dimensional Materials Beyond Graphene, in 2D Mater., edited by F. Iacopi, J. J. Boeckl, and C. Jagadish (Elsevier, 2016), pp. 149–188.

  5. L. Zhang, P. Bampoulis, A.N. Rudenko, Q. Yao, A. van Houselt, B. Poelsema, M.I. Katsnelson, and H.J.W. Zandvliet, Structural and electronic properties of Germanene on MoS2. Phys. Rev. Lett. 116, 256804 (2016).

    Article  CAS  Google Scholar 

  6. F. Zhu, W. Chen, Y. Xu, C. Gao, D. Guan, C. Liu, D. Qian, S.-C. Zhang, and J. Jia, Epitaxial growth of two-dimensional stanene. Nat. Mater. 14, 1020 (2015).

    Article  CAS  Google Scholar 

  7. P. Tang, P. Chen, W. Cao, H. Huang, S. Cahangirov, L. Xian, Y. Xu, S.-C. Zhang, W. Duan, and A. Rubio, Stable two-dimensional dumbbell stanene: a quantum spin Hall insulator. Phys. Rev. B 90, 121408 (2014).

    Article  Google Scholar 

  8. A. Molle, J. Goldberger, M. Houssa, Y. Xu, S.-C. Zhang, and D. Akinwande, Buckled two-dimensional Xene sheets. Nat. Mater. 16, 163 (2017).

    Article  CAS  Google Scholar 

  9. C.-C. Liu, W. Feng, and Y. Yao, Quantum spin hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett. 107, 76802 (2011).

    Article  Google Scholar 

  10. B. van den Broek, M. Houssa, E. Scalise, G. Pourtois, V.V. Afanasev, and A. Stesmans, No Title. Appl. Surf. Sci. 291, 104 (2014).

    Google Scholar 

  11. C.-C. Liu, H. Jiang, and Y. Yao, Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin. Phys. Rev. B 84, 195430 (2011).

    Article  Google Scholar 

  12. G. Pacchioni, Cutting phosphorene nanoribbons. Nat. Rev. Mater. 4, 291 (2019).

    Article  Google Scholar 

  13. F. Bechstedt, P. Gori, and O. Pulci, Beyond graphene: clean, hydrogenated and halogenated silicene, germanene, stanene, and plumbene. Prog. Surf. Sci. 96, 100615 (2021).

    Article  CAS  Google Scholar 

  14. J. Yuhara, Y. Fujii, K. Nishino, N. Isobe, M. Nakatake, L. Xian, A. Rubio, and G. Le Lay, Large area planar stanene epitaxially grown on Ag(1 1 1). 2D Mater. 5, 025002 (2018).

    Article  Google Scholar 

  15. Y. Yao, F. Ye, X.-L. Qi, S.-C. Zhang, and Z. Fang, Spin-orbit gap of graphene: first-principles calculations. Phys. Rev. B 75, 41401 (2007).

    Article  Google Scholar 

  16. L. Zhang, T. Gong, Z. Yu, H. Dai, Z. Yang, G. Chen, J. Li, R. Pan, H. Wang, Z. Guo, H. Zhang, and X. Fu, Recent advances in hybridization, doping, and functionalization of 2D xenes. Adv. Funct. Mater. 31, 2005471 (2021).

    Article  CAS  Google Scholar 

  17. R. Zhang, W. Ji, C. Zhang, P. Li, and P. Wang, Prediction of flatness-driven quantum spin Hall effect in functionalized germanene and stanene. Phys. Chem. Chem. Phys. 18, 28134 (2016).

    Article  CAS  Google Scholar 

  18. F. Karlický and M. Otyepka, Band gaps and optical spectra of chlorographene, fluorographene and graphane from G0W0, GW0 and GW calculations on top of PBE and HSE06 orbitals. J. Chem. Theory Comput. 9, 4155 (2013).

    Article  Google Scholar 

  19. N. Gao, W.T. Zheng, and Q. Jiang, Density functional theory calculations for two-dimensional silicene with halogen functionalization. Phys. Chem. Chem. Phys. 14, 257 (2012).

    Article  CAS  Google Scholar 

  20. F. Matusalem, M. Marques, L.K. Teles, L. Matthes, J. Furthmüller, and F. Bechstedt, Quantization of spin Hall conductivity in two-dimensional topological insulators versus symmetry and spin-orbit interaction. Phys. Rev. B 100, 245430 (2019).

    Article  CAS  Google Scholar 

  21. L. Matthes, O. Pulci, and F. Bechstedt, Massive Dirac quasiparticles in the optical absorbance of graphene, silicene, germanene, and tinene. J. Phys. Condens. Matter 25, 395305 (2013).

    Article  Google Scholar 

  22. M.N. Brunetti, O.L. Berman, and R.Y. Kezerashvili, Can freestanding Xene monolayers behave as excitonic insulators? Phys. Lett. A 383, 482 (2019).

    Article  CAS  Google Scholar 

  23. Y. Xu, B. Yan, H.-J. Zhang, J. Wang, G. Xu, P. Tang, W. Duan, and S.-C. Zhang, Large-gap quantum spin Hall insulators in tin films. Phys. Rev. Lett. 111, 136804 (2013).

    Article  Google Scholar 

  24. J.-K. Lyu, S.-F. Zhang, C.-W. Zhang, and P.-J. Wang, Stanene: a promising material for new electronic and spintronic applications. Ann. Phys. 531, 1900017 (2019).

    Article  CAS  Google Scholar 

  25. P. Rivero, J.-A. Yan, V.M. García-Suárez, J. Ferrer, and S. Barraza-Lopez, Stability and properties of high-buckled two-dimensional tin and lead. Phys. Rev. B 90, 241408 (2014).

    Article  CAS  Google Scholar 

  26. J. Deng, B. Xia, X. Ma, H. Chen, H. Shan, X. Zhai, B. Li, A. Zhao, Y. Xu, W. Duan, S.-C. Zhang, B. Wang, and J.G. Hou, Epitaxial growth of ultraflat stanene with topological band inversion. Nat. Mater. 17, 1081 (2018).

    Article  CAS  Google Scholar 

  27. J. Yuhara, Y. Fujii, K. Nishino, N. Isobe, M. Nakatake, L. Xian, A. Rubio, and G. Le Lay, Large area planar stanene epitaxially grown on Ag(1 1 1). 2D Mater. 5, 25002 (2018).

    Article  Google Scholar 

  28. A. Prakash, P. Xu, X. Wu, G. Haugstad, X. Wang, and B. Jalan, Adsorption-controlled growth and the influence of stoichiometry on electronic transport in hybrid molecular beam epitaxy-grown BaSnO3 films. J. Mater. Chem. C 5, 5730 (2017).

    Article  CAS  Google Scholar 

  29. T. Osaka, H. Omi, K. Yamamoto, and A. Ohtake, Surface phase transition and interface interaction in the -Sn/InSb{111} system. Phys. Rev. B 50, 7567 (1994).

    Article  CAS  Google Scholar 

  30. C.-Z. Xu, Y.-H. Chan, P. Chen, X. Wang, D. Flötotto, J.A. Hlevyack, G. Bian, S.-K. Mo, M.-Y. Chou, and T.-C. Chiang, Gapped electronic structure of epitaxial stanene on InSb(111). Phys. Rev. B 97, 35122 (2018).

    Article  CAS  Google Scholar 

  31. M. Liao, Y. Zang, Z. Guan, H. Li, Y. Gong, K. Zhu, X.-P. Hu, D. Zhang, Y. Xu, Y.-Y. Wang, K. He, X.-C. Ma, S.-C. Zhang, and Q.-K. Xue, Superconductivity in few-layer stanene. Nat. Phys. 14, 344 (2018).

    Article  CAS  Google Scholar 

  32. J. Yuhara and G. Le Lay, Beyond silicene: synthesis of germanene, stanene and plumbene. Jpn. J. Appl. Phys. 59, SN0801 (2020).

    Article  CAS  Google Scholar 

  33. F.C. Walsh, and C.T.J. Low, A review of developments in the electrodeposition of tin. Surf. Coat. Technol. 288, 79 (2016).

    Article  CAS  Google Scholar 

  34. D.T. Mackay, M.T. Janish, U. Sahaym, P.G. Kotula, K.L. Jungjohann, C.B. Carter, and M.G. Norton, Erratum to: template-free electrochemical synthesis of tin nanostructures. J. Mater. Sci. 51, 2759 (2016).

    Article  CAS  Google Scholar 

  35. S. Saxena, R.P. Chaudhary, and S. Shukla, Stanene: atomically thick free-standing layer of 2D Hexagonal tin. Sci. Rep. 6, 31073 (2016).

    Article  CAS  Google Scholar 

  36. T. Wang, H. Wang, Z. Kou, W. Liang, X. Luo, F. Verpoort, Y.-J. Zeng, and H. Zhang, Xenes as an emerging 2D monoelemental family: fundamental electrochemistry and energy applications. Adv. Funct. Mater. 30, 2002885 (2020).

    Article  CAS  Google Scholar 

  37. B. Mortazavi, A. Dianat, G. Cuniberti, and T. Rabczuk, Application of silicene, germanene and stanene for Na or Li ion storage: a theoretical investigation. Electrochim. Acta 213, 865 (2016).

    Article  CAS  Google Scholar 

  38. M.R. Kumar and S. Singh, Ab-initio analysis of zigzag stanene nanoribbons for lithium-ion batteries. Int. J. Mod. Phys. B 36, 2250199 (2022).

    Article  Google Scholar 

  39. L. Wu, P. Lu, R. Quhe, Q. Wang, C. Yang, P. Guan, and K. Yang, Stanene nanomeshes as anode materials for Na-ion batteries. J. Mater. Chem. A 6, 7933 (2018).

    Article  CAS  Google Scholar 

  40. H. Tian, Z.W. Seh, K. Yan, Z. Fu, P. Tang, Y. Lu, R. Zhang, D. Legut, Y. Cui, and Q. Zhang, Theoretical investigation of 2D layered materials as protective films for lithium and sodium metal anodes. Adv. Energy Mater. 7, 1602528 (2017).

    Article  Google Scholar 

  41. A.M. Juliet, P. Dey, and D.J. Preshiya, Stanene / MnO2 based micro-super capacitors a composite material for energy storage. J. Chem. Pharm. Res. 7, 811 (2015).

    CAS  Google Scholar 

  42. P. Garg, I. Choudhuri, and B. Pathak, Stanene based gas sensors: effect of spin–orbit coupling. Phys. Chem. Chem. Phys. 19, 31325 (2017).

    Article  CAS  Google Scholar 

  43. X. Chen, C. Tan, Q. Yang, R. Meng, Q. Liang, M. Cai, S. Zhang, and J. Jiang, Ab initio study of the adsorption of small molecules on stanene. J. Phys. Chem. C 120, 13987 (2016).

    Article  CAS  Google Scholar 

  44. S. Yan, Q. Zhou, W. Ju, and X. Li, Effect of doping and vacancy defect on the sensitivity of stanene toward HCN. Mol. Phys. 120, e2025938 (2022).

    Article  Google Scholar 

  45. K. Ma, J. Chen, X. Dai, J. Xiao, L. Wang, L. Xu, and Z. Wang, The potential of stanene with transition metal adsorbed as a promising gas sensor: a first-principles study. Results Phys. 28, 104617 (2021).

    Article  Google Scholar 

  46. A. Abbasi, Modulation of the electronic properties of pristine and AlP-codoped stanene monolayers by the adsorption of CH2O and CH4 molecules: a DFT study. Mater. Res. Express 6, 76410 (2019).

    Article  CAS  Google Scholar 

  47. J. Zhou, D. Liu, F. Wu, L. Yang, Y. Xiong, and A. Abbasi, A DFT study on the possibility of embedding a single Ti atom into the perfect stanene monolayer as a highly efficient gas sensor. Theor. Chem. Acc. 139, 46 (2020).

    Article  CAS  Google Scholar 

  48. A. Zhang, H. Yang, Q. Liu, W. Li, and Y. Wang, DFT insights into the adsorption properties of toxic gas molecules on pure and transition metal embedded stanene monolayers: towards gas sensor devices. Synth. Met. 266, 116441 (2020).

    Article  CAS  Google Scholar 

  49. K. Ma, Y. Wang, Y. Zheng, J. Xiao, L. Xu, X. Dai, and Z. Wang, Adsorption and sensing behaviors of SF6 decomposed species on pristine and Ru/Ti-modified stanene monolayer: a first-principles study. Phys. E Low-Dimens. Syst. Nanostruct. 142, 115307 (2022).

    Article  CAS  Google Scholar 

  50. R. Bhuvaneswari, V. Nagarajan, and R. Chandiramouli, Adsorption studies of trimethyl amine and n-butyl amine vapors on stanene nanotube molecular device – a first-principles study. Chem. Phys. 501, 78 (2018).

    Article  CAS  Google Scholar 

  51. A. Abbasi and J.J. Sardroodi, Density functional theory investigation of the interactions between the buckled stanene nanosheet and XO2 gases (X = N, S, C). Comput. Theor. Chem. 1125, 15 (2018).

    Article  CAS  Google Scholar 

  52. H. Li, F. An, J. Xie, and Y. Wang, DFT study of the adsorption behavior of NO gas molecule on the Ga and As pair doped stanene nanosheets. Phys. E Low-Dimens. Syst. Nanostruct. 124, 114348 (2020).

    Article  CAS  Google Scholar 

  53. Y.-Z. Chang, J.-N. Lin, S.-D. Li, and H. Liu, Adsorption of greenhouse gases (methane and carbon dioxide) on the pure and Pd-adsorbed stanene nanosheets: a theoretical study. Surfaces and Interfaces 22, 100878 (2021).

    Article  CAS  Google Scholar 

  54. N. Karimi, J.J. Sardroodi, and A.E. Rastkar, The adsorption of NO2, SO2, and O3 molecules on the Al-doped stanene nanotube: a DFT study. J. Mol. Model. 28, 290 (2022).

    Article  CAS  Google Scholar 

  55. M. Xiao, B. Zhang, H. Song, Y. Lv, and B. Xiao, Effects of external electric field on adsorption behavior of organic molecules on stanene: highly sensitive sensor devices. Solid State Commun. 338, 114459 (2021).

    Article  CAS  Google Scholar 

  56. V. Nagarajan and R. Chandiramouli, Interaction of volatile organic compounds (VOCs) emitted from banana on stanene nanosheet—a first-principles studies. Struct. Chem. 29, 1321 (2018).

    Article  CAS  Google Scholar 

  57. Y. Li and C.-M. Yu, DFT study of the adsorption of C6H6 and C6H5OH molecules on stanene nanosheets: applications to sensor devices. Phys. E Low-Dimens. Syst. Nanostruct. 127, 114533 (2021).

    Article  CAS  Google Scholar 

  58. T. Wang, R. Zhao, M. Zhao, X. Zhao, Y. An, X. Dai, and C. Xia, Effects of applied strain and electric field on small-molecule sensing by stanene monolayers. J. Mater. Sci. 52, 5083 (2017).

    Article  CAS  Google Scholar 

  59. H. Vovusha, T. Hussain, M. Sajjad, H. Lee, A. Karton, R. Ahuja, and U. Schwingenschlögl, Sensitivity enhancement of stanene towards toxic SO2 and H2S. Appl. Surf. Sci. 495, 143622 (2019).

    Article  CAS  Google Scholar 

  60. B.A. Bernevig and S.-C. Zhang, Quantum spin Hall effect. Phys. Rev. Lett. 96, 106802 (2006).

    Article  Google Scholar 

  61. C.-X. Zhao and J.-F. Jia, Stanene: a good platform for topological insulator and topological superconductor. Front. Phys. 15, 53201 (2020).

    Article  Google Scholar 

  62. C.-C. Ren, Y. Feng, S.-F. Zhang, C.-W. Zhang, and P.-J. Wang, The electronic properties of the stanene/MoS2 heterostructure under strain. RSC Adv. 7, 9176 (2017).

    Article  CAS  Google Scholar 

  63. C. Mondal, S. Kumar, and B. Pathak, Topologically protected hybrid states in graphene–stanene–graphene heterojunctions. J. Mater. Chem. C 6, 1920 (2018).

    Article  CAS  Google Scholar 

  64. A.I. Khan, T. Chakraborty, N. Acharjee, and S. Subrina, Stanene-hexagonal boron nitride heterobilayer: structure and characterization of electronic property. Sci. Rep. 7, 16347 (2017).

    Article  Google Scholar 

  65. X. Chen, R. Meng, J. Jiang, Q. Liang, Q. Yang, C. Tan, X. Sun, S. Zhang, and T. Ren, Electronic structure and optical properties of graphene/stanene heterobilayer. Phys. Chem. Chem. Phys. 18, 16302 (2016).

    Article  CAS  Google Scholar 

  66. D. Liang, H. He, P. Lu, L. Wu, C. Zhang, P. Guan, and S. Wang, Tunable band gaps in stanene/MoS2 heterostructures. J. Mater. Sci. 52, 5799 (2017).

    Article  CAS  Google Scholar 

  67. B. Chakraborty, M.M. Borgohain, and N.C. Adhikary, Structural and electronic properties of Stanene-BeO heterobilayer. Mater. Res. Express 7, 15029 (2020).

    Article  CAS  Google Scholar 

  68. D.S. Dhungana, C. Grazianetti, C. Martella, S. Achilli, G. Fratesi, and A. Molle, Two-dimensional silicene-stanene heterostructures by epitaxy. Adv. Funct. Mater. 31, 2102797 (2021).

    Article  CAS  Google Scholar 

  69. J. Chen, K. Ma, J. Xiao, L. Xu, X. Dai, and Z. Wang, Modulation of the electronic properties of blue phosphorene/stanene heterostructures by electric field and interlayer distance. Results Phys. 34, 105252 (2022).

    Article  Google Scholar 

  70. A. Abbasi and J.J. Sardroodi, Exploration of sensing of nitrogen dioxide and ozone molecules using novel TiO2/Stanene heterostructures employing DFT calculations. Appl. Surf. Sci. 442, 368 (2018).

    Article  CAS  Google Scholar 

  71. H. Cao, Z. Zhou, X. Zhou, and J. Cao, Tunable electronic properties and optical properties of novel stanene/ZnO heterostructure: first-principles calculation. Comput. Mater. Sci. 139, 179 (2017).

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no financial support was received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: SCR and SR; Literature survey and primary draft: KS and SR; Finalization of draft and editing: SCR.

Corresponding author

Correspondence to Somnath C. Roy.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, S., Suganthi, K. & Roy, S.C. Stanene: State of the Art and Future Prospects. J. Electron. Mater. 52, 3563–3575 (2023). https://doi.org/10.1007/s11664-023-10377-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10377-y

Keywords

Navigation