Skip to main content
Log in

Two-Dimensional Materials of Group IVA: Latest Advances in Epitaxial Methods of Growth

  • PHYSICS OF SEMICONDUCTORS AND DIELECTRICS
  • Published:
Russian Physics Journal Aims and scope

Two-dimensional materials have become one of the central research topics of scientists around the world after the production of graphene – a monatomic layer of carbon. Currently, two-dimensional crystals are among the most promising materials for next-generation nanoelectronics and photonics. The exploration of the feasibility of 2D materials devices causes a deeper insight into the physical properties of these new materials and provides a starting point for the development of a number of important practical areas. Over the past few years, researchers have been paying increased attention to graphene-like materials of group IVA elements, such as silicene (Si), germanene (Ge), stanene (Sn), and plumbene (Pb). Experimental production and study of the unique properties of two-dimensional monatomic layers of carbon, silicon, germanium, tin, and lead on various substrates created the prerequisites for the development of new generation devices based on them. The wide possibilities for controlling their exotic electronic, magnetic, and optical properties through the choice of the substrate, the design and geometry of the two-dimensional layer, as well as by controlling the magnitude of elastic stresses, have made them a dominating topic for studying in the field of nanotechnology and materials sciences. This paper reviews the latest advances in growing silicene, germanene, stanene, and plumbene using epitaxial methods. Growth technologies for creation of high-quality two-dimensional structures of large area required for promising instrumentation area are considered in more detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. C. Yung, W. M. Wu, M. P. Pierpoint, and F. V. Kusmartsev, Contemporary Phys., 54, 233–251 (2013).

    Article  ADS  Google Scholar 

  2. M. Ezawa and G. Le Lay, New J. Phys., 17, 090201 (1–3) (2015).

  3. V. P. Ponomarenko, V. S. Popov, S. V. Popov, and E. L. Chepurnov, Usp. Prikl. Fiz., 7, 10–48 (2019).

    Google Scholar 

  4. X. Li, L. Tao, Z. Chen, et al., Appl. Phys. Rev., 4, 021306 (1–31) (2017).

  5. A. Molle, J. Goldberger, M. Houssa, et al., Nature Mater., 16, 163–169 (2017).

    Article  ADS  Google Scholar 

  6. K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., Science, 306, 666–669 (2004).

    Article  ADS  Google Scholar 

  7. A. Acun, L. Zhang, P. Bampoulis, et al., J. Phys.: Cond. Matter., 27, 443002 (1–11) (2015).

  8. L. Tao, E. Cinquanta, D. Chiappe, et al., Nature Nanotechnol., 10, 227–231 (2015).

    Article  ADS  Google Scholar 

  9. M. Houssa, B. van den Broek, K. Iordanidou, et al., Nano Research, 9, 774–778 (2016).

    Article  Google Scholar 

  10. B. Mortazavi, A. Dianat, G. Cuniberti, and T. Rabczuk, Electrochim. Acta., 213, 865–870 (2016).

    Article  Google Scholar 

  11. P. Garg, I. Choudhuri, and B. Pathak, Phys. Chem. Chem. Phys., 19, 31325–31334 (2017).

    Article  Google Scholar 

  12. M. Liao, Y. Zang, Z. Guan, et al., Nature Phys., 14, 344–348 (2018).

    Article  ADS  Google Scholar 

  13. S. Cahangirov, Lecture Notes in Physics, Springer (2016).

    Google Scholar 

  14. K. Takeda and K. Shiraishi, Phys. Rev. B, 50, 916–922 (1994).

    Google Scholar 

  15. G. G. Guzman-Veri and L. C. Lew Yan Voon, Phys. Rev. B, 76, 075131 (1–10) (2007).

  16. A. Molle, C. Grazianetti, L. Tao, et al., Chem. Soc. Rev., 47, 6370–6387 (2018).

    Article  Google Scholar 

  17. D. Jose and A. Datta, Phys. Chem. Chem. Phys., 13, 7304–7311 (2011).

    Article  Google Scholar 

  18. M. Houssa, A. Dimoulas, and A. Molle, J. Phys.: Cond. Matter., 27, 253002 (1–19) (2015).

  19. G. Le Lay, Nature Nanotechnol., 10, 202–203 (2015).

    Article  ADS  Google Scholar 

  20. P. Vogt, P. De Padova, C. Quaresima, et al., Phys. Rev. Lett., 108, 155501 (1–5) (2012).

  21. C.-L. Lin, R. Arafune, K. Kawahara, et al., Appl. Phys. Express., 5, 045802 (1–3) (2012).

  22. M. Ezawa, J. Phys. Soc. Jpn., 84, 121003 (1–11) (2015).

  23. S. Balendhran, S. Walia, H. Nili, et al., Small., 11, 640–652 (2015).

    Article  Google Scholar 

  24. L. Meng, Y. Wang, L. Zhang, et al., Nano Lett., 13, 685–690 (2013).

    Article  ADS  Google Scholar 

  25. H. Jamgotchian, Y. Colignon, N. Hamzaoui, et al., J. Phys.: Cond. Matter., 24, 172001 (1–7) (2012).

  26. A. Fleurence, R. Friedlein, T. Ozaki, et al., Phys. Rev. Lett., 108, 245501 (1–5) (2012).

  27. D. Chiappe, E. Scalise, E. Cinquanta, et al., Adv. Mater., 26, 2096–2101 (2014).

    Article  Google Scholar 

  28. T. Aizawa, S. Suehara, and S. Otani, J. Phys. Chem. C, 118, 23049–23057 (2014).

    Article  Google Scholar 

  29. L. Huang, Y. Zhang, Y.-Y. Zhang, et al., Nano Lett., 17, 1161–1166 (2017).

    Article  ADS  Google Scholar 

  30. M. De Crescenzi, I. Berbezier, M. Scarselli, et al., ACS Nano, 10, 11163–11171 (2016).

    Article  Google Scholar 

  31. S. Cahangirov, M. Topsakal, E. Akturk, et al., Phys. Rev. Lett., 102, 236804 (1–4) (2009).

  32. M. Derivaz, D. Dentel, R. Stephan, et al., Nano Lett., 15, 2510–2516 (2015).

    Article  ADS  Google Scholar 

  33. L. Zhang, P. Bampoulis, A. N. Rudenko, et al., Phys. Rev. Lett., 116, 256804 (1–6) (2016).

  34. M. E. Davila and G. Le Lay, Sci. Rep., 6, 20714 (1–9) (2016).

  35. M. E. Davila, L. Xian, S. Cahangirov, et al., New J. Phys., 16, 095002 (1–11) (2014).

  36. L. Li, S. Lu, J. Pan, et al., Adv. Mater., 26, 4820–4824 (2014).

    Article  Google Scholar 

  37. F. d’Acapito, S. Torrengo, E. Xenogiannopoulou, et al., J. Phys.: Cond. Matter., 28, 045002 (1–8) (2016).

  38. R. Webb, New Scientist, 224, 38–39 (2014).

    ADS  Google Scholar 

  39. M. Gross, Chem. Industry., 78, 24–27 (2014).

    Google Scholar 

  40. S. K. Sahoo and K.-H. Wei, Adv. Mater. Interfac., 6, 1900752 (1–14) (2019).

  41. F. Zhu, W. Chen, Y. Xu, et al., Nature Mater., 14, 1020–1025 (2015).

    Article  ADS  Google Scholar 

  42. J. Gou, L. Kong, H. Li, et al., Phys. Rev. Mater., 1, 054004 (1–6) (2017).

    Google Scholar 

  43. C.-Z. Xu, Y.-H. Chan, P. Chen, et al., Phys. Rev. B, 97, 035122 (1–5) (2018).

  44. J. Yuhara, Y. Fujii, K. Nishino, et al., 2D Materials., 5, 025002 (1–8) (2018).

  45. J. Yuhara, B. He, N. Matsunami, et al., Adv. Mater., 31, 1901017 (1–6) (2019).

  46. J. Yuhara and G. Le Lay, Jpn. J. Appl. Phys., 59, SN0801 (1–6) (2020).

  47. G. Bihlmayer, J. Sassmannshausen, A. Kubetzka, et al., Phys. Rev. Lett., 124, 126401 (2020).

  48. A. Stepniak-Dybala, and M. Krawiec, J. Phys. Chem. C, 123, 17019–17025 (2019).

    Article  Google Scholar 

  49. J. Deng, B. Xia, X. Ma, et al., Nature Mater., 17, 1081–1086 (2018).

    Article  ADS  Google Scholar 

  50. K.-C. Chen, L.-M. Lee, H.-A. Chen, et al., Semicond. Sci. Technol., 34, 105020 (1–7) (2019).

  51. W. Pang, K. Nishino, T. Ogikubo, et al., Appl. Surf. Sci., 517, 146224 (1–6) (2020).

  52. Y. Liu, S. Zhang, J. He, et al., Nano-Micro Lett., 11, 13 (1–24) (2019).

  53. C. Grazianetti, C. Martella, and A. Molle, Phys. Status Solidi RRL, 14, 1900439 (1–11) (2020).

  54. R. John and B. Merlin, J. Phys. Chem. Solids, 110, 307–315 (2017).

    Article  ADS  Google Scholar 

  55. T. Mukhopadhyay, A. Mahata, S. Adhikari, and M. Asle Zaeem, Sci. Rep., 7, 15818 (1–13) (2017).

  56. Z. Shi and C. V. Singh, Nanoscale, 9, 7055–7062 (2017).

    Article  Google Scholar 

  57. Shubham and A. Swarup, Comput. Cond. Matter., 14, 84–88 (2018).

  58. L. C. Lew Yan Voon, J. Zhu, and U. Schwingenschlogl, Appl. Phys. Rev., 3, 040802 (1–13) (2018).

  59. A. M. Tokmachev, D. V. Averyanov, O. E. Parfenov, et al., Nature Commun., 9, 1672 (1–9) (2018).

  60. H.-P. Cheng, S. Liu, X. Chen, et al., AVS Quantum Sci., 2, 027101 (1–19) (2020).

  61. O. E. Parfenov, D. V. Averyanov, A. M. Tokmachev, et al., Adv. Functional Mater., 30, 1910643 (1–8) (2020).

  62. W. J. M. Kort-Kamp, Phys. Rev. Lett., 119, 147401 (1–5) (2017).

  63. X.-L. Yu and J. Wu, PCCP, 20, 2296–2307 (2018).

    Article  ADS  Google Scholar 

  64. X. Zhai, R. Wen, X. Zhou, et al., Phys. Rev. Appl., 11, 064047 (1–10) (2019).

  65. C. Liu, H. S. Kim, M. Won, et al., Matter, 3, 12–13 (2020).

    Article  Google Scholar 

  66. H. Nakano, H. Tetsuka, M. Spencer, and T. Morishita, Sci. Technol. Adv. Mater., 19, 76–100 (2018).

    Article  Google Scholar 

  67. Z.-X. Pang, Y. Wang, W.-X. Ji, et al., Physica E: Low-dimensional Systems and Nanostructures, 120, 114095 (1–5) (2020).

  68. K. A. Lozovoy, A. P. Kokhanenko, N. Yu. Akimenko, et al., Russ. Phys. J., 63, No. 2, 296–302 (2020).

    Article  Google Scholar 

  69. K. A. Lozovoy, A. G. Korotaev, A. P. Kokhanenko, et al., Surf. Coat. Technol., 384, 125289 (1–5) (2020).

  70. K. A. Lozovoy, Y. Zhou, R. Smith, et al., Thin Solid Films, 713, 138363 (1–5) (2020).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Lozovoy.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 9, pp. 3–10, September, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lozovoy, K.A., Dirko, V.V., Vinarskiy, V.P. et al. Two-Dimensional Materials of Group IVA: Latest Advances in Epitaxial Methods of Growth. Russ Phys J 64, 1583–1591 (2022). https://doi.org/10.1007/s11182-022-02495-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-022-02495-7

Keywords

Navigation