Skip to main content
Log in

Contribution of 90° Si-Core Partial Dislocation to Asymmetric Double-Rhombic Single Shockley-Type Stacking Faults in 4H-SiC Epitaxial Layers

  • Topical Collection: 19th Conference on Defects (DRIP XIX)
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The expanding shapes of the double-rhombic single Shockley-type stacking faults (DRSFs) from half-loop array (HLA)-type basal plane dislocations (BPDs) and non-HLA-type BPDs were investigated by combining photoluminescence imaging and ultraviolet light illumination. The expansion rate of HLA-type DRSFs was found to increase rapidly after coalescence between neighboring DRSFs. It is thought that the 90° silicon-core [Si(g)] partial dislocation (PD) was a candidate for an expanding front that contributes to extremely rapid expansion of DRSFs. This might be one of the first reports on experimental observations of expanding 90° Si(g) PDs. The 90° Si(g) PDs also seemed to correlate to the symmetry of DRSF shapes for both HLA-type and non-HLA-type DRSFs, and the possibility of every intermediate symmetry was considered by introducing a proportion factor which is defined by combining two running BPD line directions at the origin within the same Burgers vector and glide type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. https://www.un.org/sustainabledevelopment/sustainable-development-goals/

  2. T. Kimoto, A. Iijima, H. Tsuchida, T. Miyazawa, T. Tawara, A. Otsuki, T. Kato, and Y. Yonezawa, Understanding and reduction of degradation phenomena in SiC power devices, Proc. IEEE 2017 Intern. Reliability Phys. Symp., 2A-1.1 (2017).

  3. A. Agarwal, H. Fatima, S. Haney, and S.-H. Ryu, A new degradation mechanism in high-voltage SiC power MOSFETs. IEEE Electron Device Lett. 28, 587 (2007).

    Article  CAS  Google Scholar 

  4. T. Ishigaki, T. Murata, K. Kinoshita, T. Morikawa, T. Oda, R. Fujita, K. Konishi, Y. Mori, and A. Shima, Analysis of degradation phenomena in bipolar degradation screening process for SiC-MOSFETs, Proc. 31st Int. Symp. Power Semiconductor Devices & ICs, 2019, p.259 (2019).

  5. N.A. Mahadik, R.E. Stahlbush. M.G. Ancona, E.A. Imhoff, K.D. Hobart, R.L. Myers-Ward, C.R. Eddy, D.K. Gaskill, and F.J. Kub, Observation of stacking faults from basal plane dislocations in highly doped 4H-SiC epilayers. Appl. Phys. Lett. 100, 042102 (2012).

    Article  Google Scholar 

  6. T. Tawara, T. Miyazawa, M. Ryo, M. Miyazato, T. Fujimoto, K. Takenaka, S. Matsunaga, M. Miyajima, A. Otsuki, Y. Yonezawa, T. Kato, H. Okumura, T. Kimoto, and H. Tsuchida, Short minority carrier lifetimes in highly nitrogen-doped 4H-SiC epilayers for suppression of the stacking fault formation in PiN diodes. J. Appl. Phys. 120, 115101 (2016).

    Article  Google Scholar 

  7. A. Tanaka, H. Matsuhata, N. Kawabata, D. Mori, K. Inoue, M. Ryo, T. Fujimoto, T. Tawara, M. Miyazato, M. Miyajima, K. Fukuda, A. Ohtsuki, T. Kato, H. Tsuchida, Y. Yonezawa, and T. Kimoto, Growth of shockley type stacking faults upon forward degradation in 4H-SiC P-i-N diodes. J. Appl. Phys. 119, 095711 (2016).

    Article  Google Scholar 

  8. S. Hayashi, T. Yamashita, J. Senzaki, M. Miyazato, M. Ryo, M. Miyajima, T. Kato, Y. Yonezawa, K. Kojima, and H. Okumura, Influence of basal-plane dislocation structures on expansion of single shockley-type stacking faults in forward-current degradation of 4H-SiC P-i-N diodes. Jpn. J. Appl. Phys. 57, 04FR07 (2018).

    Article  Google Scholar 

  9. A. Iijima, I. Kamata, H. Tsuchida, J. Suda, and T. Kimoto, Correlation between shapes of shockley stacking faults and structures of basal plane dislocations in 4H-SiC epilayers. Philos. Mag. 97, 2736 (2017).

    Article  CAS  Google Scholar 

  10. H. Matsuhata, and T. Sekiguchi, Morphology of single shockley-type stacking faults generated by recombination enhanced dislocation glide in 4H-SiC. Philos. Mag. 98, 878 (2018).

    Article  CAS  Google Scholar 

  11. J. Nishio, A. Okada, C. Ota, and R. Iijima, Direct confirmation of structural differences in single shockley stacking faults expanding from different origins in 4H-SiC PiN diodes. J. Appl. Phys. 128, 085705 (2020).

    Article  CAS  Google Scholar 

  12. J. Nishio, A. Okada, C. Ota, and R. Iijima, Single shockley stacking fault expansion from immobile basal plane dislocations in 4H-SiC. Jpn. J. Appl. Phys. 60, SBBD01 (2021).

    Article  CAS  Google Scholar 

  13. J. Nishio, C. Ota, and R. Iijima, Conversion of shockley partial dislocation pairs from unexpandable to expandable combinations after epitaxial growth of 4H-SiC. J. Appl. Phys. 130, 075107 (2021).

    Article  CAS  Google Scholar 

  14. C. Ota, J. Nishio, A. Okada, and R. Iijima, Origin and generation process of a triangular single shockley stacking fault expanding from the surface side in 4H-SiC PIN diodes. J. Electron. Mater. 50, 6504 (2021).

    Article  CAS  Google Scholar 

  15. J. Nishio, C. Ota, and R. Iijima, Structural study of single shockley stacking faults terminated near substrate/epilayer interface in 4H-SiC. Jpn. J. Appl. Phys. 61, SC1005 (2022).

    Article  Google Scholar 

  16. J. Nishio, C. Ota, and R. Iijima, Partial dislocation structures at expansion terminating areas of bar-shaped single shockley-type stacking faults and basal plane dislocations at the origin in 4H-SiC. Jpn. J. Appl. Phys. 62, 1 (2023).

    Article  Google Scholar 

  17. J. Nishio, C. Ota, and R. Iijima, Origin of double-rhombic single shockley stacking faults in 4H-SiC epitaxial layers. J. Electron. Mater. 52, 679 (2023).

    Article  CAS  Google Scholar 

  18. S. Ha, H.J. Chung, N.T. Nuhfer, and M. Skowronski, Dislocation nucleation in 4H silicon carbide epitaxy. J. Crystal Growth 262, 130 (2004).

    Article  CAS  Google Scholar 

  19. S. Ha, M. Skowronski, and H. Lendenmann, Nucleation sites of recombination-enhanced stacking fault formation in silicon carbide P-i-N diodes. J. Appl. Phys. 96, 393 (2004).

    Article  CAS  Google Scholar 

  20. X. Zhang, S. Ha, Y. Hanlumnyang, C.H. Chou, V. Rodriguez, M. Skowronski, J.J. Sumakeris, M.J. Paisley, and M.J. O’Loughlin, Morphology of basal plane dislocations in 4H-SiC homoepitaxial layers grown by chemical vapor deposition. J. Appl. Phys. 101, 053517 (2007).

    Article  Google Scholar 

  21. Z. Zhang, R.E. Stahlbush, P. Pirouz, and T.S. Sudarshan, Characteristics of dislocation half-loop arrays in 4H-SiC homo-epilayer. J. Electron. Mater. 36, 539 (2007).

    Article  CAS  Google Scholar 

  22. X. Zhang, M. Skowronski, K.X. Liu, R.E. Stahlbush, J.J. Sumakeris, M.J. Paisley, and M.J. O’Loughlin, Glide and multiplication of basal plane dislocations during 4H-SiC homoepitaxy. J. Appl. Phys. 102, 093520 (2007).

    Article  Google Scholar 

  23. H. Tsuchida, I. Kamata, K. Kojima, K. Momose, M. Odawara, T. Takahashi, Y. Ishida, and K. Matsuzawa, Influence of growth conditions and substrate properties on formation of interfacial dislocations and dislocation half-loop arrays in 4H-SiC (0001) and (000–1) epitaxy. MRS Symp. Proc. 1069, D04-D13 (2008).

    Article  Google Scholar 

  24. N. Zhang, Y. Chen, Y. Zhang, M. Dudley, and R.E. Stahlbush, Mechanism of dislocation half-loop arrays in 4H-silicon carbide homoepitaxial layers. Appl. Phys. Lett. 94, 122108 (2009).

    Article  Google Scholar 

  25. R.E. Stahlbush, B.L. VanMil, K.X. Liu, K.K. Lew, R.L. Myers-Ward, D.K. Gaskill, C.R. Eddy Jr., X. Zhang, and M. Skowronski, Evolution of basal plane dislocations during 4H-SiC epitaxial growth. Mater. Sci. Forum 600–603, 317 (2009).

    Google Scholar 

  26. S. Ha, M. Benamara, M. Skowronski, and H. Lendenmann, Core structure and properties of partial dislocations in silicon carbide P-i-N diodes. Appl. Phys. Lett. 83, 4957 (2003).

    Article  CAS  Google Scholar 

  27. R.E. Stahlbush, M.E. Twigg, J.J. Sumakeris, K.G. Irvine, and P.A. Losee, Mechanisms of stacking fault growth in SiC PiN diodes. MRS Symp. Proc. 815, J6.4 (2004).

    Article  Google Scholar 

  28. B. Chen, T. Sekiguchi, T. Ohyanagi, H. Matsuhata, A. Kinoshita, and H. Okumura, Electron-beam-induced current and cathodeluminescence study of dislocation arrays in 4H-SiC homoepitaxial layers. J. Appl. Phys. 106, 074502 (2009).

    Article  Google Scholar 

  29. J. Nishio, C. Ota, and R. Iijima, Transmission electron microscopy study of single shockley stacking faults in 4H-SiC expanded from basal plane dislocation segments accompanied by threading edge dislocations on both ends. Mater. Sci. Forum 1062, 258 (2022).

    Article  Google Scholar 

  30. P. Pirouz, J.L. Demenet, and M.H. Hong, On transition temperatures in the plasticity and fracture of semiconductors. Philos. Mag. A 81, 1207 (2001).

    Article  CAS  Google Scholar 

  31. M. Skowronski, J.Q. Lui, W.M. Vetter, M. Dudley, C. Hallin, and H. Lendenmann, Recombination-enhanced defect motion in forward-biased 4H-SiC p-n diodes. J. Appl. Phys. 92, 4699 (2002).

    Article  CAS  Google Scholar 

  32. J. Nishio, A. Okada, C. Ota, and M. Kushibe, Photoluminescence analysis of individual partial dislocations in 4H-SiC epilayers. Mater. Sci. Forum 1004, 376 (2020).

    Article  Google Scholar 

  33. J. Nishio, A. Okada, C. Ota, and M. Kushibe, Triangular single shockley stacking fault analyses on 4H-SiC PiN diode with forward voltage degradation. J. Electron. Mater. 49, 5232 (2020).

    Article  CAS  Google Scholar 

  34. S.G. Sridhara, F.H.C. Carlsson, J.P. Bergman, and E. Janzén, Luminescence from stacking faults in 4H SiC. Appl. Phys. Lett. 79, 3944 (2001).

    Article  CAS  Google Scholar 

  35. H. Matsuhata, H. Yamaguchi, T. Yamashita, T. Tanaka, B. Chem, and T. Sekiguchi, Contrast analysis of shockley partial dislocations in 4H-SiC observed by synchrotron Berg-Barrett X-ray topography. Philos. Mag. 94, 1674 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johji Nishio.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishio, J., Ota, C. & Iijima, R. Contribution of 90° Si-Core Partial Dislocation to Asymmetric Double-Rhombic Single Shockley-Type Stacking Faults in 4H-SiC Epitaxial Layers. J. Electron. Mater. 52, 5084–5092 (2023). https://doi.org/10.1007/s11664-023-10343-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10343-8

Keywords

Navigation