Skip to main content
Log in

Origin of Double-Rhombic Single Shockley Stacking Faults in 4H-SiC Epitaxial Layers

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We have investigated double-rhombic single Shockley stacking faults (DRSFs) in 4H-SiC epitaxial layers by analyzing structural details. A combination of plan-view transmission electron microscopy (TEM) and cross-sectional high-angle annular dark field scanning TEM made it possible to determine the Burgers vectors of partial dislocations that consist of DRSF boundaries and the type of glide of the original basal plane dislocations (BPDs). From these results, the origins of DRSFs were identified as BPDs that originated as 60-degree perfect dislocations, and the inclination of the DRSFs was found to depend on the Burgers vectors and the type of glide of the original BPDs. Also, the configuration of the accompanying threading edge dislocations (TEDs) at both ends of the BPDs was categorized into two types, namely (1) TEDs at both ends of the BPD segments toward the surface of the epitaxial layer (cis-configuration) which form the half-loop arrays, and (2) a TED at one end of the BPD from the deeper side of the epitaxial layer and another toward the surface of the epitaxial layer (trans-configuration), and the original BPD segments were isolated. The shrinking processes of the DRSFs were also examined, and it was found that they were not a reversal of the expansion process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T. Ishigaki, T. Murata, K. Kinoshita, T. Morikawa, T. Oda, R. Fujita, K. Konishi, Y. Mori, and A. Shima, Analysis of Degradation Phenomena in Bipolar Degradation Screening Process for SiC-MOSFETs. In: Proceeding 31st international symposium power semiconductor devices and ICs, p. 259 (2019).

  2. T. Tawara, T. Miyazawa, M. Ryo, M. Miyazato, T. Fujimoto, K. Takenaka, S. Matsunaga, M. Miyajima, A. Otsuki, Y. Yonezawa, T. Kato, H. Okumura, T. Kimoto, and H. Tsuchida, Short minority carrier lifetimes in highly nitrogen-doped 4H-SiC epilayers for suppression of the stacking fault formation in PiN diodes. J. Appl. Phys. 120, 115101 (2016).

    Article  Google Scholar 

  3. A. Tanaka, H. Matsuhata, N. Kawabata, D. Mori, K. Inoue, M. Ryo, T. Fujimoto, T. Tawara, M. Miyazato, M. Miyajima, K. Fukuda, A. Ohtsuki, T. Kato, H. Tsuchida, Y. Yonezawa, and T. Kimoto, Growth of Shockley type stacking faults upon forward degradation in 4H-SiC P-i-N diodes. J. Appl. Phys. 119, 095711 (2016).

    Article  Google Scholar 

  4. S. Hayashi, T. Yamashita, J. Senzaki, M. Miyazato, M. Ryo, M. Miyajima, T. Kato, Y. Yonezawa, K. Kojima, and H. Okumura, Influence of basal-plane dislocation structures on expansion of single Shockley-type stacking faults in forward-current degradation of 4H-SiC P-i-N diodes. Jpn. J. Appl. Phys. 57, 04FR07 (2018).

    Article  Google Scholar 

  5. J. Nishio, A. Okada, C. Ota, and R. Iijima, Direct confirmation of structural differences in single Shockley stacking faults expanding from different origins in 4H-SiC PiN diodes. J. Appl. Phys. 128, 085705 (2020).

    Article  CAS  Google Scholar 

  6. J. Nishio, A. Okada, C. Ota, and R. Iijima, Single Shockley stacking fault expansion from immobile basal plane dislocations in 4H-SiC. Jpn. J. Appl. Phys. 60, SBBD01 (2021).

    Article  CAS  Google Scholar 

  7. J. Nishio, C. Ota, and R. Iijima, Conversion of Shockley partial dislocation pairs from unexpandable to expandable combinations after epitaxial growth of 4H-SiC. J. Appl. Phys. 130, 075107 (2021).

    Article  CAS  Google Scholar 

  8. C. Ota, J. Nishio, A. Okada, and R. Iijima, Origin and generation process of a triangular single Shockley stacking fault expanding from the surface side in 4H-SiC PIN diodes. J. Electron. Mater. 50, 6504 (2021).

    Article  CAS  Google Scholar 

  9. J. Nishio, C. Ota, and R. Iijima, Structural study of single Shockley stacking faults terminated near substrate/epilayer interface in 4H-SiC. Jpn. J. Appl. Phys. 61, SC1005 (2022).

    Article  Google Scholar 

  10. S. Ha, H.J. Chung, N.T. Nuhfer, and M. Skowronski, Dislocation nucleation in 4H silicon carbide epitaxy. J. Cryst. Growth 262, 130 (2004).

    Article  CAS  Google Scholar 

  11. S. Ha, M. Skowronski, and H. Lendenmann, Nucleation sites of recombination-enhanced stacking fault formation in silicon carbide P-i-N diodes. J. Appl. Phys. 96, 393 (2004).

    Article  CAS  Google Scholar 

  12. X. Zhang, S. Ha, Y. Hanlumnyang, C.H. Chou, V. Rodriguez, M. Skowronski, J.J. Sumakeris, M.J. Paisley, and M.J. O’Loughlin, Morphology of basal plane dislocations in 4H-SiC homoepitaxial layers grown by chemical vapor deposition. J. Appl. Phys. 101, 053517 (2007).

    Article  Google Scholar 

  13. Z. Zhang, R.E. Stahlbush, P. Pirouz, and T.S. Sudarshan, Characteristics of dislocation half-loop arrays in 4H-SiC homo-epilayer. J. Electron. Mater. 36, 539 (2007).

    Article  CAS  Google Scholar 

  14. X. Zhang, M. Skowronski, K.X. Liu, R.E. Stahlbush, J.J. Sumakeris, M.J. Paisley, and M.J. O’Loughlin, Glide and multiplication of basal plane dislocations during 4H-SiC homoepitaxy. J. Appl. Phys. 102, 093520 (2007).

    Article  Google Scholar 

  15. H. Tsuchida, I. Kamata, K. Kojima, K. Momose, M. Odawara, T. Takahashi, Y. Ishida, and K. Matsuzawa, Influence of growth conditions and substrate properties on formation of interfacial dislocations and dislocation half-loop arrays in 4H-SiC (0001) and (000–1) epitaxy. MRS Symp. Proc. (2008). https://doi.org/10.1557/PROC-1069-D04-03.

    Article  Google Scholar 

  16. N. Zhang, Y. Chen, Y. Zhang, M. Dudley, and R.E. Stahlbush, Nucleation mechanism of dislocation half-loop arrays in 4H-silicon carbide homoepitaxial layers. Appl. Phys. Lett. 94, 122108 (2009).

    Article  Google Scholar 

  17. R.E. Stahlbush, B.L. VanMil, K.X. Liu, K.K. Lew, R.L. Myers-Ward, D.K. Gaskill, C.R. Eddy Jr., X. Zhang, and M. Skowronski, Evolution of basal plane dislocations during 4H-SiC epitaxial growth. Mater. Sci. Forum 600–603, 317 (2009).

    Google Scholar 

  18. S. Ha, M. Benamara, M. Skowronski, and H. Lendenmann, Core structure and properties of partial dislocations in silicon carbide P-i-N diodes. Appl. Phys. Lett. 83, 4957 (2003).

    Article  CAS  Google Scholar 

  19. R.E. Stahlbush, M.E. Twigg, J.J. Sumakeris, K.G. Irvine, and P.A. Losee, Mechanisms of stacking fault growth in SiC PiN diodes. MRS Symp. Proc. 815, J6.4 (2004).

    Article  Google Scholar 

  20. B. Chen, T. Sekiguchi, T. Ohyanagi, H. Matsuhata, A. Kinoshita, and H. Okumura, Electron-beam-induced current and cathodeluminescence study of dislocation arrays in 4H-SiC homoepitaxial layers. J. Appl. Phys. 106, 074502 (2009).

    Article  Google Scholar 

  21. J. Nishio, C. Ota, and R. Iijima, Transmission electron microscopy study of single Shockley stacking faults in 4H-SiC expanded from basal plane dislocation segments accompanied by threading edge dislocations on both ends. Mater. Sci. Forum 1062, 258 (2022).

    Article  Google Scholar 

  22. J. Nishio, A. Okada, C. Ota, and M. Kushibe, Photoluminescence analysis of individual partial dislocations in 4H-SiC epilayers. Mater. Sci. Forum 1004, 376 (2020).

    Article  Google Scholar 

  23. J. Nishio, A. Okada, C. Ota, and M. Kushibe, Triangular single Shockley stacking fault analyses on 4H-SiC PiN diode with forward voltage degradation. J. Electron. Mater. 49, 5232 (2020).

    Article  CAS  Google Scholar 

  24. S.G. Sridhara, F.H.C. Carlsson, J.P. Bergman, and E. Janzén, Luminescence from stacking faults in 4H SiC. Appl. Phys. Lett. 79, 3944 (2001).

    Article  CAS  Google Scholar 

  25. R.E. Stahlbush, Q. Zhang, A. Agarwal, and N.A. Mahadik, Effect of stacking faults originating from half loop arrays on electrical behavior of 10 kV 4H-SiC PiN diodes. Mater. Sci. Forum 717–720, 387 (2012).

    Article  Google Scholar 

  26. N.A. Mahadik, R.E. Stahlbush, J.D. Caldwell, and K.D. Hobart, Ultraviolet photoluminescence imaging of stacking fault contraction in 4H-SiC epitaxial layers. Mater. Sci. Forum 717–720, 391 (2012).

    Article  Google Scholar 

  27. H. Matsuhata, H. Yamaguchi, T. Yamashita, T. Tanaka, B. Chem, and T. Sekiguchi, Contrast analysis of Shockley partial dislocations in 4H-SiC observed by synchrotron Berg-Barrett X-ray topography. Philos. Mag. 94, 1674 (2014).

    Article  CAS  Google Scholar 

  28. H. Matsuhata and T. Sekiguchi, Morphology of single Shockley-type stacking faults generated by recombination enhanced dislocation glide in 4H-SiC. Philos. Mag. 98, 878 (2018).

    Article  CAS  Google Scholar 

  29. T. Tanaka, H. Shiomi, N. Kawabata, Y. Yonezawa, T. Kato, and H. Okumura, Expansion and contraction of single Shockley stacking faults in SiC epitaxial layer under ultraviolet irradiation. Appl. Phys. Express 12, 041006 (2019).

    Article  CAS  Google Scholar 

  30. A. Okada, J. Nishio, R. Iijima, C. Ota, A. Goryu, M. Miyazato, M. Ryo, T. Shinohe, M. Miyajima, T. Kato, Y. Yonezawa, and H. Okumura, Dependences of contraction/expansion of stacking faults on temperature and current density in 4H-SiC P-i-N diodes. Jpn. J. Appl. Phys. 57, 061301 (2018).

    Article  Google Scholar 

  31. M.E. Twigg, R.E. Stahlbush, M. Fatemi, S.D. Arthur, J.B. Fedison, J.B. Tucker, and S. Wang, Structure of stacking faults formed during the forward bias of 4H-SiC P-i-N diodes. Appl. Phys. Lett. 82, 2410 (2003).

    Article  CAS  Google Scholar 

  32. M. Zhang, P. Pirouz, and H. Lendenmann, Transmission electron microscopy investigation of dislocations in farward-biased 4H-SiC P-i-N diodes. Appl. Phys. Lett. 83, 3320 (2003).

    Article  CAS  Google Scholar 

  33. Y. Ishikawa, M. Sudo, Y.-Z. Yao, Y. Sugawara, and M. Kato, Expansion of a single Shockley stacking fault in a 4H-SiC (11 0) epitaxial layer caused by electron beam irradiation. J. Appl. Phys. 123, 225101 (2018).

    Article  Google Scholar 

  34. P. Pirouz, J.L. Demenet, and M.H. Hong, On transition temperatures in the plasticity and fracture of semiconductors. Philos. Mag. A 81, 1207 (2001).

    Article  CAS  Google Scholar 

  35. M. Skowronski, J.Q. Lui, W.M. Vetter, M. Dudley, C. Hallin, and H. Lendenmann, Recombination-enhanced defect motion in forward-biased 4H-SiC p-n diodes. J. Appl. Phys. 92, 4699 (2002).

    Article  CAS  Google Scholar 

  36. A. Iijima, I. Kamata, H. Tsuchida, J. Suda, and T. Kimoto, Correlation between shapes of Shockley stacking faults and structures of basal plane dislocations in 4H-SiC epilayers. Philos. Mag. 97, 2736 (2017).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johji Nishio.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishio, J., Ota, C. & Iijima, R. Origin of Double-Rhombic Single Shockley Stacking Faults in 4H-SiC Epitaxial Layers. J. Electron. Mater. 52, 679–690 (2023). https://doi.org/10.1007/s11664-022-10038-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10038-6

Keywords

Navigation