Skip to main content

Advertisement

Log in

An Investigation of the Thermal Treatment Effects on the Structural, Morphological, and Optical Properties of Hydrothermally Synthesized Hexagonal Molybdenum Oxide Micro-Rods

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Hexagonal molybdenum oxide (h-MoO3) micro-rods were synthesized through a facile hydrothermal method. Thermogravimetric and differential thermal analysis (TGA-DTA) of the sample, over temperatures ranging from 30°C to 700°C, was carried out to analyze the phase transition characteristics and thermal stability. The effect of post-thermal treatment on the structural, morphological, and optical characteristics of as-prepared samples were investigated in detail. X-ray diffraction (XRD) patterns of the sample confirmed the formation of h-MoO3, and the presence of hexagonal-shaped micro-rods were observed through scanning electron microscopy (SEM). The crystalline phase was transformed to a thermodynamically stable orthorhombic structure (α-MoO3) on thermal treatment, with the micro-rods transformed to flake-like morphology. Elemental composition was confirmed through energy dispersive x-ray spectroscopy (EDS) and x-ray photoelectron spectroscopy (XPS). Band gap energy estimated from the absorption spectra lies in the range 2.70–2.94 eV. The material exhibited a superior irreversible thermochromic property, which has been observed as color bands, in the visible to NIR region of the absorption spectra. The phenomenon was well explained with the support of the XPS scan for the Mo-3d and O-1 s states. Furthermore, the photoluminescence (PL) spectra, at an excitation of 330 nm (3.76 eV), showed five emission peaks centered between 360 nm and 550 nm, with enhanced intensity on thermal treatment. The physico-chemical characteristics revealed that the material can be applicable in thermo-chromic smart windows and as host material in light-emitting diodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article.

References

  1. B. Gowtham, V. Ponnuswamy, G. Pradeesh, J. Chandrasekaran, and D. Aradhana, MoO3 overview: hexagonal plate-like MoO3 nanoparticles prepared by precipitation method. J. Mater. Sci.: Mater. Electron. 29, 6835 (2018). https://doi.org/10.1007/s10854-018-8670-7.

    Article  CAS  Google Scholar 

  2. A. Nirmal-Paul-Raj, R. Biju-Bennie, C. Joel, S. Hari-Kengaram, and S. Daniel-Abraham, Systematic analysis and the effect of Mn doping on structural, optical and magnetic properties of MoO3 nanoparticles. Solid State Communicat 341, 114532 (2022). https://doi.org/10.1016/j.ssc.2021.114532.

    Article  CAS  Google Scholar 

  3. Santos E. de Barros, S. Fernando Aparecido, and M. Italo Odone, "Structural evolution in crystalline MoO3 nanoparticles with tunable size. J Solid State Chem 190, 80–84 (2012). https://doi.org/10.1016/j.jssc.2012.02.012.

    Article  CAS  Google Scholar 

  4. S.K. Sen, Md. Manifa Noor, A.A. Mamun, M.S. Manir, M.A. Matin, M.A. Hakim, S. Nur, and S. Dutta, An investigation of 60 Co gamma radiation-induced effects on the properties of nanostructured α-MoO3 for the application in optoelectronic and photonic devices. Optical Quantum Electr (2019). https://doi.org/10.1007/s11082-019-1797-9.

    Article  Google Scholar 

  5. J. Song, X. Ni, D. Zhang, and H. Zheng, Fabrication and photoluminescence properties of hexagonal MoO3 rods. Solid State Sci. 8, 1164 (2006). https://doi.org/10.1016/j.solidstatesciences.2006.05.002.

    Article  CAS  Google Scholar 

  6. J. Peña-Bahamonde, Wu. Chunzheng, S.K. Fanourakis, S.M. Louie, J. Bao, and D.F. Rodrigues, Oxidation state of Mo affects dissolution and visible-light photocatalytic activity of MoO3 nanostructures. J. Catal. 381, 508 (2020). https://doi.org/10.1016/j.jcat.2019.11.035.

    Article  CAS  Google Scholar 

  7. L. Bai, Y. Zhang, L. Zhang, Y. Zhang, L. Sun, N. Ji, X. Li, H. Si, Y. Zhang, and H. Huang, Jahn-Teller distortions in molybdenum oxides: an achievement in exploring high rate supercapacitor applications and robust photocatalytic potential. Nano Energy 53, 982 (2018). https://doi.org/10.1016/j.nanoen.2018.09.028.

    Article  CAS  Google Scholar 

  8. J.W. Ma, L. Zhang, J. Cao, X.Y. Jiang, and Z.L. Zhang, Enhanced power efficiency for white OLED with MoO3 as hole injection layer and optimized charge balance. Solid State Commun 149, 214 (2009). https://doi.org/10.1016/j.ssc.2008.11.013.

    Article  CAS  Google Scholar 

  9. L. Zheng, Xu. Yang, D. Jin, and Yi. Xie, Novel metastable hexagonal MoO3 nanobelts: synthesis, photochromic, and electrochromic properties. Chem. Mater. 21, 5681 (2009). https://doi.org/10.1021/cm9023887.

    Article  CAS  Google Scholar 

  10. D. Dixit and K.V. Madhuri, Electrochromism in MoO3 nanostructured thin films. Superlattices Microstr 156, 106936 (2021). https://doi.org/10.1016/j.spmi.2021.106936.

    Article  CAS  Google Scholar 

  11. T.-C. Chang, X. Cao, S.-H. Bao, S.-D. Ji, H.-J. Luo, and P. Jin, Review on thermochromic vanadium dioxide based smart coatings: from lab to commercial application. Adv Manuf 6, 1 (2018). https://doi.org/10.1007/s40436-017-0209-2.

    Article  CAS  Google Scholar 

  12. Y. Jiazhen, Z. Yue, H. Wanxia, and Tu. Mingjin, Effect of Mo-W Co-doping on semiconductor-metal phase transition temperature of vanadium dioxide film. Thin Solid Films 516, 8554 (2008). https://doi.org/10.1016/j.tsf.2008.05.021.

    Article  CAS  Google Scholar 

  13. A. Dey, M.K. Nayak, A. Carmel-Mary-Esther, M.S. Pradeepkumar, D. Porwal, A.K. Gupta, P. Bera et al., Nanocolumnar crystalline vanadium oxide-molybdenum oxide antireflective smart thin films with superior nanomechanical properties. Scientific Reports 6, 36811 (2016). https://doi.org/10.1038/srep36811.

    Article  CAS  Google Scholar 

  14. Y. Xu, W. Huang, Q. Shi, Y. Zhang, L. Song, and Y. Zhang, Synthesis and properties of Mo and W ions co-doped porous nano-structured VO2 films by sol–gel process. J. Sol-Gel. Sci. Technol. 64, 493 (2012). https://doi.org/10.1007/s10971-012-2881-9.

    Article  CAS  Google Scholar 

  15. M. Morales-Luna, S.A. Tomás, M.A. Arvizu, M. Pérez-González, and E. Campos-Gonzalez, The evolution of the Mo5+ oxidation state in the thermochromic effect of MoO3 thin films deposited by RF magnetron sputtering. J. Alloy. Compd. 722, 938 (2017). https://doi.org/10.1016/j.jallcom.2017.06.149.

    Article  CAS  Google Scholar 

  16. V.R. Sreelakshmi, A. Anu Kaliani, and M. Jithin, Study of thermochromic and photocatalytic properties of MoO3 thin films. Superl Microstr 161, 107096 (2022). https://doi.org/10.1016/j.spmi.2021.107096.

    Article  CAS  Google Scholar 

  17. A. Manivel, G.-J. Lee, C.-Y. Chen, J.-H. Chen, S.-H. Ma, T.-L. Horng, and J.J. Wu, Synthesis of MoO3 nanoparticles for azo dye degradation by catalytic ozonation. Mater. Res. Bull. 62, 184 (2015). https://doi.org/10.1016/j.materresbull.2014.11.016.

    Article  CAS  Google Scholar 

  18. Q. Xia, H. Zhao, Du. Zhihong, Z. Zeng, C. Gao, Z. Zhang, Du. Xuefei, A. Kulka, and K. Świerczek, Facile synthesis of MoO3/carbon nanobelts as high-performance anode material for lithium ion batteries. Electrochim. Acta 180, 947 (2015). https://doi.org/10.1016/j.electacta.2015.09.042.

    Article  CAS  Google Scholar 

  19. F. Paraguay-Delgado, M.E. Mendoza Duarte, O. Kalu, I.A. Estrada Moreno, I. Alonso-Lemus, and G.D. Lardizábal, h-MoO3 phase transformation by four thermal analysis techniques. J Therm Anal Calor 140, 735 (2020). https://doi.org/10.1007/s10973-019-08842-0.

    Article  CAS  Google Scholar 

  20. P.S. Tamboli, C.V. Jagtap, V.S. Kadam, R.V. Ingle, R.S. Vhatkar, S.S. Mahajan, and H.M. Pathan, Spray pyrolytic deposition of α-MoO3 film and its use in dye-sensitized solar cell. Appl. Phys. A 124, 1 (2018). https://doi.org/10.1007/s00339-018-1763-6.

    Article  CAS  Google Scholar 

  21. J. Song, X. Ni, L. Gao, and H. Zheng, Synthesis of metastable h-MoO3 by simple chemical precipitation. Mater. Chem. Phys. 102(2–3), 245–248 (2007). https://doi.org/10.1016/j.matchemphys.2006.12.011.

    Article  CAS  Google Scholar 

  22. A. Chithambararaj and A. Chandra Bose, Hydrothermal synthesis of hexagonal and orthorhombic MoO3 nanoparticles. J Alloy Compd 509, 8105 (2011). https://doi.org/10.1016/j.jallcom.2011.05.067.

    Article  CAS  Google Scholar 

  23. S.K. Sen, S. Dutta, M.R. Khan, M.S. Manir, S. Dutta, A. Al Mortuza, S. Razia, and M.A. Hakim, Characterization and antibacterial activity study of hydrothermally synthesized h-MoO3 nanorods and α-MoO3 nanoplates. Bionanoscience 9, 873 (2019). https://doi.org/10.1007/s12668-019-00671-7.

    Article  Google Scholar 

  24. V. Kumar, W. Xu, and S.L. Pooi, Formation of hexagonal-molybdenum trioxide (h-MoO3) nanostructures and their pseudocapacitive behavior. Nanoscale 7, 11777 (2015). https://doi.org/10.1039/C5NR01505G.

    Article  CAS  Google Scholar 

  25. A. Santos-Beltrán, M. Santos-Beltrán, F. Paraguay-Delgado, L. Fuentes, R. García, and V. Gallegos Orozco, Heat treatment effect of MoO3 on the MB removal and its reuse. J Phys Chem Solids 121, 266 (2018). https://doi.org/10.1016/j.jpcs.2018.05.030.

    Article  CAS  Google Scholar 

  26. I. Navas, R. Vinodkumar, and V.P. Mahadevan Pillai, Self-assembly and photoluminescence of molybdenum oxide nanoparticles. Appl Phys A 103, 373 (2011). https://doi.org/10.1007/s00339-011-6345-9.

    Article  CAS  Google Scholar 

  27. V. Martín, M. Cruz-San, P.E. Morales-Luna, M. García-Tinoco, M.A. Pérez-González, H. Crotte-Ledesma, M.A. Arvizu, M. Ponce-Mosso, and S.A. Tomás, Chromogenic MoO3 thin films: thermo-, photo-, and electrochromic response to working pressure variation in RF reactive magnetron sputtering. J Mater Sci: Mater Electr 29, 15486 (2018). https://doi.org/10.1007/s10854-018-9101-5.

    Article  CAS  Google Scholar 

  28. H.S. Yogananda, H. Nagabhushana, N. Ramachandra, and S.C. Prashantha, Calcination temperature dependent structural modifications, tailored morphology and luminescence properties of MoO3 nanostructures prepared by sonochemical method. J Sci: Adv Mater Dev 3, 77 (2018). https://doi.org/10.1016/j.jsamd.2017.11.001.

    Article  Google Scholar 

  29. E. Ghaleghafi and M.B. Rahmani, Facile synthesis, characterization, and photoluminescence of lamellar α-MoO3 thin films. Solid State Sci 94, 85 (2019). https://doi.org/10.1016/j.solidstatesciences.2019.05.022.

    Article  CAS  Google Scholar 

  30. H.S. Yogananda, G.P. Darshan, S.C. Sharma, H.B. Premkumar, D. Kavyashree, P. Lalitha, and H. Nagabhushana, Colour quality parameters and enhanced white light emanation via solution combustion derived MoO3: Dy3+ micro-architectures: fluorescent probe for sensitive visualization of latent fingerprints. Opt Mater 105, 109817 (2020). https://doi.org/10.1016/j.optmat.2020.109817.

    Article  CAS  Google Scholar 

  31. H. Yan, Su. Peng Song, Z.Y. Zhang, and Qi. Wang, Facile fabrication and enhanced gas sensing properties of hierarchical MoO 3 nanostructures. RSC Adv. 5, 72728 (2015). https://doi.org/10.1039/C5RA13036K.

    Article  CAS  Google Scholar 

  32. K. Dewangan, D. Singh, N. Satpute, R. Singh, A. Jaiswal, K. Shrivas, and I. Bahadur, Hydrothermally grown α-MoO3 microfibers for photocatalytic degradation of methylene blue dye. J Mole Liq 349, 118202 (2022). https://doi.org/10.1016/j.molliq.2021.118202.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank department of physics Sree Narayana College Kannur and SN college Varkala, Thiruvananthapuram for the laboratory facilities. We also thank Kannur University for providing university fellowship for the fulfillment of this work. We would also like to acknowledge Department of Physics, Nirmalagiri College Kannur, DST STIC Kochi and CLIF under Kerala University, for providing analytical facilities.

Funding

The authors declare that no funds, grants or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by CR. First draft of the manuscript was written by CR and KCP. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to K. C. Preetha.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests while preparing this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakhi, C., Preetha, K.C. An Investigation of the Thermal Treatment Effects on the Structural, Morphological, and Optical Properties of Hydrothermally Synthesized Hexagonal Molybdenum Oxide Micro-Rods. J. Electron. Mater. 52, 3719–3728 (2023). https://doi.org/10.1007/s11664-023-10313-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10313-0

Keywords

Navigation