Skip to main content
Log in

XRD peak profile and optical properties analysis of Ag-doped h-MoO3 nanorods synthesized via hydrothermal method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present experiment, we presented the nanocrystalline pure and silver (0.2, 0.4, 0.6, and 0.8 M%)-doped hexagonal molybdenum trioxide rods synthesized by using facile and cost-effective hydrothermal method and analyzed the effects of Ag contents of different microstructural and optical properties. X-ray diffraction (XRD) patterns confirmed the hexagonal crystal structure of the nanorods, supported by FTIR spectra. The Debye–Scherrer formula, Williamson–Hall (W–H), Halder–Wagner (H–W), and size–strain plot (SSP) techniques were applied to investigate different crystallographic characteristics such as crystallite size and lattice strain of h-MoO3 nanorods by evaluating the broadening of XRD peaks. The different relevant structural parameters of the resultant h-MoO3 nanorods connected to XRD analysis such as dislocation density, lattice parameters, unit cell volume, and stacking fault have also been evaluated. The formation of nanorod shape and the presence of Ag contents were confirmed by field emission scanning electron microscope and energy-dispersive spectroscopy, respectively. The optical bandgap was estimated via both Kubelka–Munk (K–M) and Tauc’s rules. The estimated values of the bandgap were found to be in the range of 2.83–3.04 eV. The optical bandgap increased with the increased of Ag contents up to 0.4 M% and afterword decreased up to 0.8 M%. The similar variation trend of optical bandgap was observed for both methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S.K. Sen, M. Noor, M.A. AlMamun, M.S. Manir, M.A. Matin, M.A. Hakim, S. Nur, S. Dutta, Opt. Quant. Electron. 51, 82 (2019)

    Article  CAS  Google Scholar 

  2. A. Hasani, Q. Van Le, T.P. Nguyen, K.S. Choi, W. Sohn, J.K. Kim, H.W. Jang, S.Y. Kim, Sci. Rep. 7, 1 (2017)

    Article  CAS  Google Scholar 

  3. C.S. Hsu, C.C. Chan, H.T. Huang, C.H. Peng, W.C. Hsu, Thin Solid Films 516, 4839 (2008)

    Article  CAS  Google Scholar 

  4. H.H. Afify, S.A. Hassan, A. Abouelsayed, S.E. Demian, H.A. Zayed, Mater. Chem. Phys. 176, 87 (2016)

    Article  CAS  Google Scholar 

  5. Y. Liu, W. Zeng, J. Mater. Sci.: Mater. Electron. 27, 12996 (2016)

    CAS  Google Scholar 

  6. Y. Li, H. Yu, X. Huang, Z. Wu, M. Chen, RSC Advances 7, 7890 (2017)

    Article  CAS  Google Scholar 

  7. X. Qiao, J. Chen, X. Li, D. Ma, J. Appl. Phys. 107, 104505 (2010)

    Article  CAS  Google Scholar 

  8. M.Z. Shahab-ud-Din, K. Ahmad, I.A. Qureshi, M. Bhatti, J. Zahid, M. Nisar, M. Iqbal, M. Abbas, Mater. Res. Bull. 100, 120 (2018)

    Article  CAS  Google Scholar 

  9. A.L.F. Cauduro, R. Dos Reis, G. Chen, A.K. Schmid, C. Méthivier, H.G. Rubahn, L. Bossard-Giannesini, H. Cruguel, N. Witkowski, M. Madsen, ACS Appl. Mater. Interfaces 9, 7717 (2017)

    Article  CAS  Google Scholar 

  10. J. Huang, J. Yan, J. Li, L. Cao, Z. Xu, J. Wu, L. Zhou, Y. Luo, J. Alloys Compd. 688, 588 (2016)

    Article  CAS  Google Scholar 

  11. N.G. Prakash, M. Dhananjaya, A.L. Narayana, D.P. Shaik, P. Rosaiah, O.M. Hussain, Ceram. Int. 44, 9967 (2018)

    Article  CAS  Google Scholar 

  12. L.G. Pereira, L.E.B. Soledade, J.M. Ferreira, S.J.G. Lima, V.J. Fernandes, A.S. Araújo, C.A. Paskocimas, E. Longo, M.R.C. Santos, A.G. Souza, I.M.G. Santos, J. Alloys Compd. 459, 377 (2008)

    Article  CAS  Google Scholar 

  13. Z. Li, W. Wang, Z. Zhao, X. Liu, P. Song, RSC Adv. 7, 28366 (2017)

    Article  CAS  Google Scholar 

  14. M.N.H. Mia, M.F. Pervez, M.K. Hossain, M. Reefaz Rahman, M.J. Uddin, M.A. Al Mashud, H.K. Ghosh, M. Hoq, Results Phys. 7, 2683 (2017)

    Article  Google Scholar 

  15. A. Boukhachem, M. Mokhtari, N. Benameur, A. Ziouche, M. Martínez, P. Petkova, M. Ghamnia, A. Cobo, M. Zergoug, M. Amlouk, Sens. Actuators A 253, 198 (2017)

    Article  CAS  Google Scholar 

  16. A. Phuruangrat, S. Thipkonglas, T. Thongtem, S. Thongtem, Mater. Lett. 195, 37 (2017)

    Article  CAS  Google Scholar 

  17. A. Eftekhari, M.B. Rahmani, F. Masdarolomoor, J. Part. Sci. Technol. 2, 87 (2016)

    Google Scholar 

  18. A. Phuruangrat, U. Cheed-Im, T. Thongtem, S. Thongtem, Mater. Lett. 173, 158 (2016)

    Article  CAS  Google Scholar 

  19. A. Kalasapurayil Kunhiraman, M. Ramasamy, J. Nanopart. Res. 19, 203 (2017)

    Article  CAS  Google Scholar 

  20. N. Bate, H. Shi, L. Chen, J. Wang, S. Xu, W. Chen, J. Li, E. Wang, Chem. Asian J. 12, 2597 (2017)

    Article  CAS  Google Scholar 

  21. H. Sinaim, A. Phuruangrat, S. Thongtem, T. Thongtem, Mater. Chem. Phys. 132, 358 (2012)

    Article  CAS  Google Scholar 

  22. M. Paul, M. Dhanasekar, S.V. Bhat, Appl. Surf. Sci. 418, 113 (2017)

    Article  CAS  Google Scholar 

  23. S. Bagherian, A.K. Zak, Mater. Sci. Semicond. Process. 56, 52 (2016)

    Article  CAS  Google Scholar 

  24. K. Venkateswarlu, A. Chandra Bose, N. Rameshbabu, Physica B 405, 4256 (2010)

    Article  CAS  Google Scholar 

  25. M.S.A. El, S.H.S. Wasly, K. Mujasam, Appl. Phys. A 125, 1 (2019)

    Google Scholar 

  26. B. RajeshKumar, B. Hymavathi, J. Asian Ceram. Soc. 5, 94 (2017)

    Article  Google Scholar 

  27. A. Escobedo-Morales, I.I. Ruiz-López, M.L. Ruiz-Peralta, L. Tepech-Carrillo, M. Sánchez-Cantú, J.E. Moreno-Orea, Heliyon 5, 1 (2019)

    Article  Google Scholar 

  28. B. Cao, X. Wang, L. Rino, J. Wu, Y. He, Z. Feng, B. Dong, Mater. Lett. 213, 4 (2018)

    Article  CAS  Google Scholar 

  29. J. Shen, S. Guo, C. Chen, L. Sun, S. Wen, Y. Chen, S. Ruan, Sens. Actuators B 252, 757 (2017)

    Article  CAS  Google Scholar 

  30. A. Chithambararaj, B. Winston, N.S. Sanjini, S. Velmathi, A.C. Bose, J. Nanosci. Nanotechnol. 15, 4913 (2015)

    Article  CAS  Google Scholar 

  31. Y.V.B. De Santana, J. Ernane, C. Gomes, L. Matos, G. Henrique, A. Perrin, C. Perrin, J. Andrès, J.A. Varela, E. Longo, Nanomater. Nanotechnol. 4, 22 (2014)

    Article  CAS  Google Scholar 

  32. R. Mohammadzadeh, K. Reza, F. Ahsani, J. Mater. Sci.: Mater. Electron. 28, 5941 (2017)

    Google Scholar 

  33. R. Choudhary, R.P. Chauhan, J. Mater. Sci.: Mater. Electron. 27, 11674 (2016)

    CAS  Google Scholar 

  34. A. Kassim, Arab. J. Chem. 3, 243 (2010)

    Article  CAS  Google Scholar 

  35. S.K. Sen, T.C. Paul, M.S. Manir, S. Dutta, M.N. Hossain, J. Podder, J. Mater. Sci.: Mater. Electron. 30, 14355 (2019)

    CAS  Google Scholar 

  36. A. Chithambararaj, A.C. Bose, J. Alloys Compd. 509, 8105 (2011)

    Article  CAS  Google Scholar 

  37. R. Rai, T. Triloki, B.K. Singh, Appl. Phys. A 122, 1 (2016)

    Article  CAS  Google Scholar 

  38. A.R. Stokes, A.J.C. Wilson, I. Proc. Phys. Soc. Lond. 56, 174 (1944)

    Article  CAS  Google Scholar 

  39. A. Khorsand Zak, W.H. Majid, M.E. Abrishami, R. Yousefi, Solid State Sci. 13, 251 (2011)

    Article  CAS  Google Scholar 

  40. P. Garg, R. Rai, B.K. Singh, Nuclear Inst. Methods Phys. Res. A 736, 128 (2014)

    Article  CAS  Google Scholar 

  41. C.N.J. Wagner, N. Haven, Acta Cryst. 20, 312 (1965)

    Google Scholar 

  42. V. Senthilkumar, P. Vickraman, M. Jayachandran, C. Sanjeeviraja, J. Mater. Sci.: Mater. Electron. 21, 343 (2010)

    CAS  Google Scholar 

  43. Y.B. Li, Y. Bando, D. Golberg, K. Kurashima, Y.B. Li, Y. Bando, D. Golberg, K. Kurashima, Appl. Phys. Lett. 81, 5048 (2002)

    Article  CAS  Google Scholar 

  44. P. Jittiarporn, L. Sikong, K. Kooptarnond, W. Taweepreda, Ceram. Int. 40, 13487–14395 (2014)

    Article  CAS  Google Scholar 

  45. J.A. Najim, J.M. Rozaiq, Int. Lett. Chem. Phys. Astron. 15, 137 (2013)

    Article  Google Scholar 

  46. K. Nagamani, N. Revathi, P. Prathap, Y. Lingappa, K.T.R. Reddy, Curr. Appl. Phys. 12, 380 (2012)

    Article  Google Scholar 

  47. S.H. Mousavi-Zadeh, M.B. Rahmani, Mod. Phys. Lett. B 30, 1 (2016)

    Article  CAS  Google Scholar 

  48. J. Song, X. Ni, D. Zhang, H. Zheng, Solid State Sci. 8, 1164 (2006)

    Article  CAS  Google Scholar 

  49. J. Song, X. Ni, L. Gao, H. Zheng, Mater. Chem. Phys. 102, 245 (2007)

    Article  CAS  Google Scholar 

  50. G.A. Nazri, C. Julien, Solid State Ionics 80, 271 (1995)

    Article  CAS  Google Scholar 

  51. V.V. Atuchin, T.A. Gavrilova, V.G. Kostrovsky, L.D. Pokrovsky, I.B. Troitskaia, Inorg. Mater. 44, 714 (2008)

    Article  CAS  Google Scholar 

  52. A. Chithambararaj, N.S. Sanjini, S. Velmathi, C. Bose, Phys. Chem. Chem. Phys. 15, 14761 (2013)

    Article  CAS  Google Scholar 

  53. S.R. Chalana, V. Ganesan, V.P.M. Pillai, AIP Adv. 5, 107207 (2015)

    Article  CAS  Google Scholar 

  54. F. Chandoul, A. Boukhachem, F. Hosni, H. Moussa, M.S. Fayache, M. Amlouk, R. Schneider, Ceram. Int. 44, 12483 (2018)

    Article  CAS  Google Scholar 

  55. S.K. Sen, S. Dutta, R. Khan, M.S. Manir, S. Dutta, A. Al Mortuza, BioNanoScience 9, 873 (2019)

    Article  Google Scholar 

  56. S.K. Sen, T.C. Paul, S. Dutta, M.A. Matin, M.F. Islam, M.A. Hakim, Surf. Interfaces 17, 100377 (2019)

    Article  CAS  Google Scholar 

  57. B.M. Haque, D.B. Chandra, P. Jiban, I. Nurul, Z. Abdullah, Mater. Sci. Semicond. Process. 89, 223 (2018)

    Article  CAS  Google Scholar 

  58. T. Ali, A. Ahmed, U. Alam, I. Uddin, P. Tripathi, M. Muneer, Mater. Chem. Phys. 212, 325 (2018)

    Article  CAS  Google Scholar 

  59. A.J. Haider, S.S. Shaker, A.H. Mohammed, Energy Procedia 36, 776 (2013)

    Article  CAS  Google Scholar 

  60. F. Khurshid, M. Jeyavelan, M.S.L. Hudson, S. Nagarajan, R. Soc. Open Sci. 6, 181764 (2019)

    Article  CAS  Google Scholar 

  61. A. Chithambararaj, A.C. Bose, Beilstein J. Nanotechnol. 2, 585 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sapan Kumar Sen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sen, S.K., Paul, T.C., Dutta, S. et al. XRD peak profile and optical properties analysis of Ag-doped h-MoO3 nanorods synthesized via hydrothermal method. J Mater Sci: Mater Electron 31, 1768–1786 (2020). https://doi.org/10.1007/s10854-019-02694-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02694-y

Navigation