Skip to main content
Log in

Lattice Thermal Transport of BAs, CdSe, CdTe, and GaAs: A First Principles Study

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This article presents a demonstration of the significant impact that the atomic masses of constituent atoms and the isotopically pure and heavy property of a constituent atom have on the thermal conductivity in the zinc blende crystal structure of semiconductor materials. We take boron arsenide and gallium arsenide from the semiconductors of groups \(({\textbf{iii}} - {\textbf{v}})\) as well as cadmium selenide and cadmium telluride from the semiconductors of groups \(({\textbf{ii}} - {\textbf{vi}})\). Thermal conductivity is acquired by using the first-principles calculation technique and the Boltzmann transport equation with the relaxation time approximation. The corresponding thermal conductivity of CdSe and CdTe are \({\textbf {7.58}}\) \({\textbf {Wm}}^{-1}{} {\textbf {K}}^{-1}\) and \({\textbf {5.27}}\) \({\textbf {Wm}}^{-1}{} {\textbf {K}}^{-1}\) at room temperature \(({\textbf {300}}\,{\textbf {K}})\) , which is significantly lower than that of BAs. We performed calculations of phonon scattering, group velocities, relaxation time, mean free path, and the mode Grüneisen parameter to investigate such differences in their thermal characteristics. The outcomes of our research have the potential to enhance our understanding of the mechanisms of heat transfer in BAs, CdSe, CdTe, and GaAs, and to validate the criteria for identifying semiconductor materials with high thermal conductivity, thereby enabling the design of more efficient nano-electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L. Lindsay, First principles peierls-boltzmann phonon thermal transport: a topical review. Nanoscale Microscale Thermophys. Eng. 20(2), 67–84 (2016). https://doi.org/10.1080/15567265.2016.1218576

    Article  CAS  Google Scholar 

  2. H. Bao, J. Chen, X. Gu, and B. Cao, A review of simulation methods in micro/nanoscale heat conduction. ES Energy Environ. 1(39), 16–55 (2018). https://doi.org/10.30919/esee8c149

    Article  Google Scholar 

  3. T. Feng and X. Ruan, Prediction of spectral phonon mean free path and thermal conductivity with applications to thermoelectrics and thermal management: a review. J. Nanomater. (2014). https://doi.org/10.1155/2014/206370

    Article  Google Scholar 

  4. J. Shalf, The future of computing beyond moore’s law. Philos. Trans. R. Soc. A 378(2166), 20190061 (2020). https://doi.org/10.1098/rsta.2019.0061

    Article  Google Scholar 

  5. A. Zou, J. Leng, X. He, Y. Zu, C.D. Gill, V.J. Reddi, and X. Zhang, Voltage-stacked power delivery systems: reliability, efficiency, and power management. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 39(12), 5142–5155 (2020). https://doi.org/10.1109/TCAD.2020.2969607

    Article  Google Scholar 

  6. P.Z. Jia, Z.X. Xie, Y.X. Deng, Y. Zhang, L.M. Tang, W.X. Zhou, and K.Q. Chen, High thermoelectric performance induced by strong anharmonic effects in monolayer (pbx) 2 (x= s, se, te). Appl. Phys. Lett. 121(4), 043901 (2022). https://doi.org/10.1063/5.0097064

    Article  CAS  Google Scholar 

  7. C.W. Wu, X. Ren, S.Y. Li, Y.J. Zeng, W.X. Zhou, and G. Xie, Significant regulation of stress on the contribution of optical phonons to thermal conductivity in layered li2zrcl6: First-principles calculations combined with the machine-learning potential approach. Appl. Phys. Lett. 121(17), 172201 (2022). https://doi.org/10.1063/5.0122357

    Article  CAS  Google Scholar 

  8. C.W. Wu, X. Ren, G. Xie, W.X. Zhou, G. Zhang, and K.Q. Chen, Enhanced high-temperature thermoelectric performance by strain engineering in biocl. Phys. Rev. Appl. 18(1), 014053 (2022). https://doi.org/10.1103/PhysRevApplied.18.014053

    Article  CAS  Google Scholar 

  9. X. Yang, T. Feng, J. Li, X, and Ruan, Evidence of fifth-and higher-order phonon scattering entropy of zone-center optical phonons. Phys. Rev. B 105(11), 115–205 (2022). https://doi.org/10.1103/PhysRevB.105.115205

    Article  CAS  Google Scholar 

  10. A. Maradudin and A. Fein, Scattering of neutrons by an anharmonic crystal. Phys. Rev. 128(6), 2589 (1962). https://doi.org/10.1103/PhysRev.128.2589

    Article  CAS  Google Scholar 

  11. A. Maradudin, A. Fein, and G. Vineyard, On the evaluation of phonon widths and shifts. Phys. Status Solidi (B) 2(11), 1479–1492 (1962). https://doi.org/10.1002/pssb.19620021106

    Article  Google Scholar 

  12. K. Esfarjani, G. Chen, and H.T. Stokes, Heat transport in silicon from first-principles calculations. Phys. Rev. B 84(8), 085204 (2011). https://doi.org/10.1103/PhysRevB.84.085204

    Article  CAS  Google Scholar 

  13. X. Wang, M. Zebarjadi, K. Esfarjani, First principles calculations of solid-state thermionic transport in layered van der waals heterostructures. Nanoscale 8(31), 14695–14704 (2016). https://doi.org/10.1039/C6NR02436J

    Article  CAS  Google Scholar 

  14. S.D. Guo, Phonon transport in janus monolayer mosse: a first-principles study. Phys. Chem. Chem. Phys. 20(10), 7236–7242 (2018). https://doi.org/10.1039/C8CP00350E

    Article  CAS  Google Scholar 

  15. L. Paulatto, I. Errea, M. Calandra, and F. Mauri, First-principles calculations of phonon frequencies, lifetimes, and spectral functions from weak to strong anharmonicity: The example of palladium hydrides. Phys. Rev. B 91(5), 054304 (2015). https://doi.org/10.1103/PhysRevB.91.054304

    Article  CAS  Google Scholar 

  16. N. Sato and Y. Takagiwa, First-principles study on lattice dynamics and thermal conductivity of thermoelectric intermetallics fe3al2si3. Crystals 11(4), 388 (2021). https://doi.org/10.3390/cryst11040388

    Article  CAS  Google Scholar 

  17. T. Feng, L. Lindsay, and X. Ruan, Four-phonon scattering significantly reduces intrinsic thermal conductivity of solids. Phys. Rev. B 96(16), 161201 (2017). https://doi.org/10.1103/PhysRevB.96.161201

    Article  Google Scholar 

  18. J. Zhu, T. Feng, S. Mills, P. Wang, X. Wu, L. Zhang, S.T. Pantelides, X. Du, and X. Wang, Record-low and anisotropic thermal conductivity of a quasi-one-dimensional bulk zrte5 single crystal. ACS Appl. Mater. Interfaces 10(47), 40740–40747 (2018). https://doi.org/10.1021/acsami.8b12504

    Article  CAS  Google Scholar 

  19. M. Hong, Y. Wang, T. Feng, Q. Sun, S. Xu, S. Matsumura, S.T. Pantelides, J. Zou, and Z.G. Chen, Strong phonon-phonon interactions securing extraordinary thermoelectric ge1-x sb x te with zn-alloying-induced band alignment. J. Am. Chem. Soc. 141(4), 1742–1748 (2018). https://doi.org/10.1021/jacs.8b12624

    Article  CAS  Google Scholar 

  20. B. Xu, T. Feng, M.T. Agne, Q. Tan, Z. Li, K. Imasato, L. Zhou, J.H. Bahk, X. Ruan, G.J. Snyder et al., Manipulating band structure through reconstruction of binary metal sulfide for high-performance thermoelectrics in solution-synthesized nanostructured bi13s18i2. Angew. Chem. 130(9), 2437–2442 (2018). https://doi.org/10.1002/ange.201713223

    Article  Google Scholar 

  21. K. Yuan, X. Zhang, D. Tang, and M. Hu, Anomalous pressure effect on the thermal conductivity of zno, gan, and aln from first-principles calculations. Phys. Rev. B 98(14), 144303 (2018). https://doi.org/10.1103/PhysRevB.98.144303

    Article  CAS  Google Scholar 

  22. A. Jain and A.J. McGaughey, Thermal transport by phonons and electrons in aluminum, silver, and gold from first principles. Phys. Rev. B 93(8), 081206 (2016). https://doi.org/10.1103/PhysRevB.93.081206

    Article  CAS  Google Scholar 

  23. R. Muthaiah and J. Garg, Thermal conductivity of magnesium selenide (mgse)-a first principles study. Comput. Mater. Sci. 198, 110679 (2021). https://doi.org/10.1016/j.commatsci.2021.110679

    Article  CAS  Google Scholar 

  24. J. Garg, N. Bonini, and N. Marzari, First-principles determination of phonon lifetimes, mean Free paths, and thermal conductivities in crystalline materials: pure silicon and germanium. Top. Appl. Phys. 128, 115–136 (2014). https://doi.org/10.1007/978-1-4614-8651-0_4

    Article  Google Scholar 

  25. J. Garg, T. Luo, and G. Chen, Spectral concentration of thermal conductivity in gan-a first-principles study. Appl. Phys. Lett. 112(25), 252101 (2018). https://doi.org/10.1063/1.5026903

    Article  CAS  Google Scholar 

  26. Z. Liu and T. Luo, Thermal transport in superconducting niobium nitride: a first-principles study. Appl. Phys. Lett. 118(4), 043102 (2021). https://doi.org/10.1063/5.0041075

    Article  CAS  Google Scholar 

  27. X. Wu, J. Lee, V. Varshney, J.L. Wohlwend, A.K. Roy, and T. Luo, Thermal conductivity of wurtzite zinc-oxide from first-principles lattice dynamics-a comparative study with gallium nitride. Sci. Rep. 6(1), 1–10 (2016). https://doi.org/10.1038/srep22504

    Article  CAS  Google Scholar 

  28. R. Yang, S. Yue, Y. Quan, and B. Liao, Crystal symmetry based selection rules for anharmonic phonon-phonon scattering from a group theory formalism. Phys. Rev. B 103(18), 184302 (2021). https://doi.org/10.1103/PhysRevB.103.184302

    Article  CAS  Google Scholar 

  29. L. Lindsay, D. Broido, and T. Reinecke, First-principles determination of ultrahigh thermal conductivity of boron arsenide: a competitor for diamond? Phys. Rev. Lett. 111(2), 025901 (2013). https://doi.org/10.1103/PhysRevLett.111.025901

    Article  CAS  Google Scholar 

  30. Z. Liu, X. Yang, B. Zhang, and W. Li, High thermal conductivity of wurtzite boron arsenide predicted by including four-phonon scattering with machine learning potential. ACS Appl. Mater. Interfaces 13(45), 53409–53415 (2021). https://doi.org/10.1021/acsami.1c11595

    Article  CAS  Google Scholar 

  31. M. Fava, N.H. Protik, C. Li, N.K. Ravichandran, J. Carrete, A. van Roekeghem, G.K. Madsen, and N. Mingo, How dopants limit the ultrahigh thermal conductivity of boron arsenide: a first principles study. NPI Comput. Mater. 7(1), 1–7 (2021). https://doi.org/10.1038/s41524-021-00519-3

    Article  CAS  Google Scholar 

  32. N.H. Protik and D.A. Broido, Coupled transport of phonons and carriers in semiconductors: a case study of n-doped gaas. Phys. Rev. B 101(7), 075202 (2020). https://doi.org/10.1103/PhysRevB.101.075202

    Article  CAS  Google Scholar 

  33. D. Broido, L. Lindsay, and T. Reinecke, Ab initio study of the unusual thermal transport properties of boron arsenide and related materials. Phys. Rev. B 88(21), 214303 (2013). https://doi.org/10.1103/PhysRevB.88.214303

    Article  CAS  Google Scholar 

  34. J.S. Kang, M. Li, H. Wu, H. Nguyen, and Y. Hu, Experimental observation of high thermal conductivity in boron arsenide. Science 361(6402), 575–578 (2018). https://doi.org/10.1126/science.aat5522

    Article  CAS  Google Scholar 

  35. F. Tian, K. Luo, C. Xie, B. Liu, X. Liang, L. Wang, G.A. Gamage, H. Sun, H. Ziyaee, J. Sun et al., Mechanical properties of boron arsenide single crystal. Appl. Phys. Lett. 114(13), 131903 (2019). https://doi.org/10.1063/1.5093289

    Article  CAS  Google Scholar 

  36. G. Dushaq, A. Nayfeh, and M. Rasras, Complementary metal oxide semiconductor (cmos) compatible gallium arsenide metal-semiconductor-metal photodetectors (gaas msmpds) on silicon using ultra-thin germanium buffer layer for visible photonic applications. J. Appl. Phys. 126(19), 193,106 (2019). https://doi.org/10.1063/1.5120705

    Article  CAS  Google Scholar 

  37. A.Y. Liu and J. Bowers, Photonic integration with epitaxial iii–v on silicon. IEEE J. Sel. Top. Quantum Electron. 24(6), 1–12 (2018). https://doi.org/10.1109/JSTQE.2018.2854542

    Article  Google Scholar 

  38. M.A. Tran, D. Huang, and J.E. Bowers, Tutorial on narrow linewidth tunable semiconductor lasers using si/iii-v heterogeneous integration. APL photonics 4(11), 111101 (2019). https://doi.org/10.1063/1.5124254

    Article  CAS  Google Scholar 

  39. K. Li, Z. Liu, M. Tang, M. Liao, D. Kim, H. Deng, A.M. Sanchez, R. Beanland, M. Martin, T. Baron et al., O-band inas/gaas quantum dot laser monolithically integrated on exact (0 0 1) si substrate. J. Cryst. Growth 511, 56–60 (2019). https://doi.org/10.1016/j.jcrysgro.2019.01.016

    Article  CAS  Google Scholar 

  40. H. Sodabanlu, K. Watanabe, M. Sugiyama, and Y. Nakano, Effects of various dopants on properties of gaas tunneling junctions and p–i–n solar cells. Jpn. J. Appl. Phys. 56(8S2), 08MC11 (2017). https://doi.org/10.7567/JJAP.56.08MC11

    Article  Google Scholar 

  41. M. Praveena, A. Mukherjee, M. Venkatapathi, and J. Basu, Plasmon-mediated emergence of collective emission and enhanced quantum efficiency in quantum dot films. Phys. Rev. B 92(23), 235403 (2015). https://doi.org/10.1103/PhysRevB.92.235403

    Article  CAS  Google Scholar 

  42. C. Shi, A.N. Beecher, Y. Li, J.S. Owen, B.M. Leu, A.H. Said, M.Y. Hu, and S.J. Billinge, Size-dependent lattice dynamics of atomically precise cadmium selenide quantum dots. Phys. Rev. Lett. 122(2), 026101 (2019). https://doi.org/10.1103/PhysRevLett.122.026101

    Article  CAS  Google Scholar 

  43. R. Kapadnis, S. Bansode, A. Supekar, P. Bhujbal, S. Kale, S. Jadkar, and H. Pathan, Cadmium telluride/cadmium sulfide thin films solar cells: a review. ES Energy Environ. 10(2), 3–12 (2020). https://doi.org/10.30919/esee8c706

    Article  CAS  Google Scholar 

  44. Q. Zhong, Z. Dai, J. Liu, Y. Zhao, and S. Meng, The excellent te performance of photoelectric material cdse along with a study of zn (cd) se and zn (cd) te based on first-principles. RSC Adv. 9(44), 25471–25479 (2019). https://doi.org/10.1039/c9ra04748d

    Article  CAS  Google Scholar 

  45. W. Patterson, S. Bigotta, M. Sheik-Bahae, D. Parisi, M. Tonelli, and R. Epstein, Anti-stokes luminescence cooling of tm 3+ doped bay 2 f 8. Opt. Express 16(3), 1704–1710 (2008). https://doi.org/10.1364/OE.16.001704

    Article  CAS  Google Scholar 

  46. M. Hua and R.S. Decca, Net energy up-conversion processes in cdse/cds (core/shell) quantum dots, a possible pathway to towards optical cooling. arXiv preprint arXiv:2203.15013 (2022). https://doi.org/10.1103/PhysRevB.106.085421

  47. T. Luo, J. Garg, J. Shiomi, K. Esfarjani, and G. Chen, Gallium arsenide thermal conductivity and optical phonon relaxation times from first-principles calculations. EPL Europhys. Lett. 101(1), 16001 (2013). https://doi.org/10.1209/0295-5075/101/16001

    Article  CAS  Google Scholar 

  48. P. Kumar, Semiconductor (cdse and cdte) quantum dot: synthesis, properties and applications. Mater. Today Proc. 51, 900–904 (2022). https://doi.org/10.1016/j.matpr.2021.06.281

    Article  CAS  Google Scholar 

  49. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo et al., Quantum espresso: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21(39), 395,502 (2009). https://doi.org/10.1088/0953-8984/21/39/395502

    Article  Google Scholar 

  50. R. Elmér, M. Berg, L. Carlén, B. Jakobsson, B. Norén, A. Oskarsson, G. Ericsson, J. Julien, T.F. Thorsteinsen, M. Guttormsen et al., K+ emission in symmetric heavy ion reactions at subthreshold energies. Phys. Rev. Lett. 77(24), 4884 (1996). https://doi.org/10.1103/PhysRevLett.77.4884

    Article  Google Scholar 

  51. P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953 (1994). https://doi.org/10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  52. G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758 (1999). https://doi.org/10.1103/PhysRevB.59.1758

    Article  CAS  Google Scholar 

  53. J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  54. A. Togo, I. Tanaka, First principles phonon calculations in materials science. Scripta Mater. 108, 1–5 (2015). https://doi.org/10.1016/j.scriptamat.2015.07.021

    Article  CAS  Google Scholar 

  55. A. Togo, L. Chaput, and I. Tanaka, Distributions of phonon lifetimes in brillouin zones. Phys. Rev. B 91(9), 094306 (2015). https://doi.org/10.1103/PhysRevB.91.094306

    Article  CAS  Google Scholar 

  56. L. Chaput, Direct solution to the linearized phonon boltzmann equation. Phys. Rev. Lett. 110(26), 265506 (2013). https://doi.org/10.1103/PhysRevLett.110.265506

    Article  CAS  Google Scholar 

  57. A. Inyushkin, A. Taldenkov, A.Y. Yakubovsky, A. Markov, L. Moreno-Garsia, and B. Sharonov, Thermal conductivity of isotopically enriched 71gaas crystal. Semiconduct. Sci. Technol. 18(7), 685 (2003). https://doi.org/10.1088/0268-1242/18/7/315

    Article  CAS  Google Scholar 

  58. J. Yang, H. Tang, Y. Zhao, Y. Zhang, J. Li, Z. Ni, Y. Chen, and D. Xu, Thermal conductivity of zinc blende and wurtzite cdse nanostructures. Nanoscale 7(38), 16071–16078 (2015). https://doi.org/10.1039/C5NR04117A

    Article  CAS  Google Scholar 

  59. L.D. Whalley, J.M. Skelton, J.M. Frost, and A. Walsh, Phonon anharmonicity, lifetimes, and thermal transport in ch 3 nh 3 pbi 3 from many-body perturbation theory. Phys. Rev. B 94(22), 220301 (2016). https://doi.org/10.1103/PhysRevB.94.220301

    Article  Google Scholar 

  60. J.M. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford University Press, Oxford, 2001)

    Book  Google Scholar 

  61. E. Fermi, Nuclear Physics: A Course given by Enrico Fermi at the University of Chicago (University of Chicago Press, Chicago, 1950)

    Google Scholar 

  62. B. Peng, H. Zhang, H. Shao, Y. Xu, G. Ni, R. Zhang, and H. Zhu, Phonon transport properties of two-dimensional group-iv materials from ab initio calculations. Phys. Rev. B 94(24), 245420 (2016). https://doi.org/10.1103/PhysRevB.94.245420

    Article  Google Scholar 

  63. M. Lax and P. Hu, V. Narayanamurti, Spontaneous phonon decay selection rule: N and u processes. Phys. Rev. B 23(6), 3095 (1981). https://doi.org/10.1103/PhysRevB.23.3095

    Article  CAS  Google Scholar 

  64. Z. Ding, J. Zhou, B. Song, M. Li, T.H. Liu, and G. Chen, Umklapp scattering is not necessarily resistive. Phys. Rev. B 98(18), 180302 (2018). https://doi.org/10.1103/PhysRevB.98.180302

    Article  CAS  Google Scholar 

  65. A. Maznev and O. Wright, Demystifying umklapp vs normal scattering in lattice thermal conductivity. Am. J. Phys. 82(11), 1062–1066 (2014). https://doi.org/10.1119/1.4892612

    Article  Google Scholar 

  66. H.J. Pang, L.C. Chen, Z.Y. Cao, H. Yu, C.G. Fu, T.J. Zhu, A.F. Goncharov, and X.J. Chen, Mode grüneisen parameters of an efficient thermoelectric half-heusler. J. Appl. Phys. 124(19), 195107 (2018). https://doi.org/10.1063/1.5050697

    Article  CAS  Google Scholar 

  67. D. Cuffari and A. Bongiorno, Calculation of mode grüneisen parameters made simple. Phys. Rev. Lett. 124(21), 215501 (2020). https://doi.org/10.1103/PhysRevLett.124.215501

    Article  CAS  Google Scholar 

  68. A.M. Hofmeister and H.K. Mao, Redefinition of the mode gruneisen parameter for polyatomic substances and thermodynamic implications. Proc. Natl. Acad. Sci. 99(2), 559–564 (2002). https://doi.org/10.1073/pnas.241631698

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurul Ahad Akil.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akil, N.A., Guo, SD. Lattice Thermal Transport of BAs, CdSe, CdTe, and GaAs: A First Principles Study. J. Electron. Mater. 52, 3401–3412 (2023). https://doi.org/10.1007/s11664-023-10305-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10305-0

Keywords

Navigation